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1 The book is split roughly into four blocks. Chapters 1 to 7 cover algebra and
functions, chapters 8 to 11 cover geometry, chapters 12 to 15 cover calculus, and
chapters 16 to 18 cover probability and statistics. Chapter 19 contains questions
that mix together different parts of the course - a favourite trick in International
% Baccalaureate® (IB) examinations.

N You do not have to work through the book in the order presented, but given
how much the IB likes to mix up topics, you will find that some questions refer
Y to material in previous chapters. In such cases, a ‘rewind panel” will tell you that
the material has been covered earlier, so that you can decide whether to remind
/- yourself or move on.

In the book we have tried to include only material that will be examinable. There
are many proofs and ideas that are useful and interesting but which are not

| included in the main text; these can be found on the CD-ROM should you wish
X to explore them.

" Each chapter starts with a list of learning objectives which give you an idea
about what the chapter contains. There is also an introductory problem that

| illustrates what you will be able to do after you have completed the chapter.
Some introductory problems relate to ‘real life’ situations, while others are purely
) mathematical. You should not expect to be able to solve the problem at the

start, but you may want to think about possible strategies and what sort of new
( facts and methods would help you. The solution to the introductory problem is
provided at the end of the chapter, after the summary of the chapter contents.

i The most important ideas and formulae are emphasised in the Key point boxes.

| I They also highlight which formulae are given in the Formula booklet.@

a Each worked example is split into two columns. On the right is what you should
write down in your solution. Sometimes examples may go into more detail than

X you strictly need, but they are designed to give you an idea of what is required to
score full method marks in examinations. Mathematics, however, is about much

5 more than remembering methods and preparing for examinations. So, on the left
of each worked example are notes that describe the thought processes and suggest

+ which approach you could use to tackle the question. We hope that these will

)

Vi Introduction © Cambridge University Press 2012.
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help you learn how to solve problems that differ from the worked examples. It is
very deliberate that some of the exercise questions require you to do more than
just repeat the methods in the worked examples — mathematics is about thinking!

There are several kinds of boxes that appear throughout the book.

Theory of knowledge issues

Every lesson is really a ‘theory of knowledge’ lesson, but sometimes the
connections may not be obvious. Although mathematics is frequently cited as an
example of certainty and truth, things are often not so clear-cut. In these boxes
we will try to highlight some of the weaknesses and ambiguities in mathematics,
as well as showing how mathematics links to other areas of knowledge.

From another perspective

Mathematics is often described as a unified international language, but the
International Baccalaureate encourages looking at things in various ways. As well
as highlighting some differences between mathematicians from different parts of
the world, these boxes also discuss other perspectives on the mathematics we are
covering - historical, pragmatic and cultural.

Research explorer

As part of your course, you will be asked to write a report on an area of
mathematics beyond the syllabus, related to a topic that changes from year to
year. It is sometimes difficult to know which topics are suitable as a basis for such
reports, so we have tried to show where a topic can act as a jumping-off point for
further work. These can also give you ideas for the extended essay. There is a lot
of great mathematics out there!

Exam hints

Although we encourage you to think of mathematics as more than just a subject
to be studied in order to pass an examination, it is useful to be aware of some
common errors so that you can try to avoid making them yourself. In these boxes
we highlight common pitfalls; we also point out where graphical calculators can
be used effectively to simplify a question or speed up your work, often referring
to the relevant calculator skills sheet on the CD-ROM.

Fast forward / Rewind

Mathematics is all about making links. You might be interested in seeing how
something you have just learned will be used elsewhere in the course, or you may
need to go back and remind yourself of a previous topic. These boxes indicate
connections with other sections of the book to help you find your way around.

© Cambridge University Press 2012.
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The colour coding
The questions are colour-coded to distinguish between different levels.

Black questions are drill questions. They are meant to help you practise the methods described in
the book, but they are usually not structured like typical questions that appear in the examination.
This does not mean they are easy - in fact, some of them are quite tough - but they are generally
similar in style to the worked examples.

Each differently numbered drill question tests a different skill. Lettered subparts (a), (b), (c), ...

of a question are of increasing difficulty. Within each lettered part there may be multiple roman-
numeral parts (i), (ii), (iii), ..., which are all of similar difficulty. Unless you want to get lots of
practice, we recommend that you do only one roman-numeral part and then check your answer. If
you have made a mistake, you may want to think about what went wrong and then attempt another
of the roman-numeral parts.

. Green questions are examination-style questions which should be accessible to students on
the way to achieving a grade 3 or 4.

. Blue questions are harder examination-style questions. If you are aiming for a grade 5 or 6,
you should be able to make significant progress through most of these.

. Red questions are at the very top end of difficulty among examination-style questions. If
you can do these, then you are likely to be on course for a grade 7.

Gold questions are those that are not typically set in the examination but which
are designed to provoke thinking and discussion, in order to help you gain a better
understanding of a particular concept.

At the end of each chapter you will see longer questions typical of the second section of the IB
examination. The parts (a), (b), (¢c), ... of these follow the same colour-coding scheme.

Of course, these are just guidelines. If you are aiming for a grade 6, do not be surprised if
occasionally you find a green question you cannot do; people are rarely equally good at all areas
of the syllabus. Similarly, even if you are able to do all the red questions, that does not guarantee
you will get a grade 7 — after all, in the examination you will have to deal with time pressure and
examination stress! It is also worth remembering that these questions are graded according to
our experience of the final examination. When you first start the course, you may well find the
questions harder than you would do by the end of the course, so try not to get discouraged.

Calculator versus non-calculator questions

In the final examination there will be one paper in which calculators are not allowed. Some questions
require a calculator, but most could appear in either the calculator or the non-calculator paper.

£ Certain types of question are particularly common in the non-calculator paper, and you
2 need to know how to deal with them. They are indicated by the non-calculator symbol.

= On the other hand, some questions can be done in a clever way using a calculator, or cannot
realistically be done without using a calculator. These are marked with a calculator symbol.

viii  Introduction © Cambridge University Press 2012.
Not for printing, sharing or distribution.
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Note, however, that in the final examination you will not get any calculator/non-
calculator indications, so you must make sure to learn which types of questions
have an easy calculator method. The calculator skills sheets on the CD-ROM can
help with this.

With questions that are not labelled with either the calculator or the non-
calculator symbol, you could mix up practising with and without a calculator.
Be careful not to become too reliant on your calculator - half of the core
examination needs to be done without one!

On the CD-ROM there are various materials that you might find useful.

Prior learning

The International Baccalaureate syllabus lists what candidates are expected to
know before taking the examination. Not all the topics on the list are explicitly
covered in the course, but knowledge of them may be needed to answer
examination questions. Don’t worry, you do not have to be familiar with all the
‘prior learning’ topics before starting the course: we have indicated in the rewind
panels where a particular concept or skill is required, and on the CD-ROM you
can find a self-assessment test for checking your knowledge, as well as some
worksheets to help you learn any skills that you might be missing.

Coursebook support
Supporting worksheets include:

« calculator skills sheets that give instructions for making optimal use of some
of the recommended graphical calculators

o fill-in proof sheets to allow you to re-create proofs that are not required in the
examination

« self-discovery sheets to encourage you to investigate new results for yourself
in the examination

« supplementary sheets exploring some applications, international and
historical perspectives of the mathematics covered in the syllabus.

e-version

A flat pdf of the whole coursebook (for days when you don’t want to carry the
paperback!)

We hope that you will find Standard Level Mathematics for the IB diploma an
interesting and enriching course. You may also find it quite challenging, but
do not get intimidated - frequently, topics start to make sense only after lots of
revision and practice. Persevere and you will succeed!

The author team.

© Cambridge University Press 2012. Introduction iX
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Quadratic e
functions e

* graphs of quadratic

Ifuncltio_ns ;

e about the uses of

Introductory problem Ny i'diﬁerem_ forms F’f ¢
. quadratic function
A small dairy farmer wants to sell a new type of luxury ; -3
cheese. After a fixed set-up cost of $250, he can produce - * how o solve quadratic
the cheese at a cost of $9 per kilogram. He is able to 0s. ta :e.quzcmons and ) { 4
produce up to 400kg, but he plans to take advance orders S'mUhQneOUS equations
and produce only what he can sell. His market research = how to identify the
suggests that the amount he would be able to sell depends _ number of solutions of
on the price in the following way: the amount decreases a quadratic eqdoﬁoh

proportionally with the price; if he charged $20 per kg he
would not sell any, and if the cheese was free he would ‘sell’
the maximum 400 kg that he could produce. What price
per kilogram should the farmer set in order to maximise
his profit?

* how to use quadratic
functions to solve
practical problems.

Problems like this, where we have to maximise or minimise a

certain quantity, are known as optimisation problems. They are ol
common in economics and business (e.g. minimising costs and

maximising profits), biology (e.g. finding the maximum possible )
size of a population) and physics (e.g. electrons moving to the

lowest energy state). The quadratic function is the simplest '3
function with a maximum or minimum point, so it is often used

to model such situations. Quadratic functions are also found in 4
many natural phenomena, such as the motion of a projectile or A function is a rule )
the dependence of power on voltage in an electric circuit. that tells you what

to do with any value
you put in. We will

The quadratic form y = ax2 + bx+ ¢ [ Junctions iy

general in chapter

A quadratic function has the general form y=ax*+bx+c 4, but before then
(where a # 0). In this chapter we will investigate graphs of you will learn about
quadratic functions and, in particular, how features of the some particular
graphs relate to the coefficients a, b and c. types of functions. 7
n
.[I :
© Cambridge University Press 2012. 1 Quadratic functions 1
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xeR means that Let us look at two examples of quadratic functions:
x can be any real
) number.

See Prior Learning <l
section G on the

CD'RQM Jor  the T//& See Calculator Skills sheets 2 and 4 on the CDROM
meaning of such for how to sketch and analyse graphs on a graphic display
statements. calculator.

n=2x>-2x-4 and  y,=-x>+4x-3 (xeR)

EXAM HINT

You can use your calculator to plot the two graphs:

The word ‘quadratic’ *’ y y
indicates that the **
term with the
highest power in =200 2w — 4
the equation is x2. It comes Yp=—2"+4v =3
from the Latin quadratus, ., VAN x
meaning ‘square’.
11 s /
4%
Vertex
These two graphs have a similar shape, called a parabola.
A parabola has a single turning point (called its vertex) and
a vertical line of symmetry passing through the vertex. The
most obvious difference between the two graphs above is that
_ the first one has a minimum point whereas the second has a
4} Line of maximum point. This is due to the different signs of the x* term
Symmetry in y, and in y,.

You can use your calculator to find the position of the vertex

of a parabola. For the graphs above you should find that the

- coordinates of the vertices are (0.5, —4.5 ) and (2, 1); the lines of
1 symmetry therefore have equations x = 0.5 and x = 2.

KEY POINT 1.1

For a quadratic function f(x) = ax® + bx + c:

If a > 0, f(x) is a positive quadratic. The graph has a
minimum point and goes up on both sides.

If a <0, f(x) is a negative quadratic. The graph has a
-z maximum point and goes down on both sides.




The constant coeflicient (denoted by ¢ here) gives the position of (A
the y-intercept of the graph, that is, where the curve crosses the
y-axis.

Worked example 1.1

Match each equation to the corresponding graph, explaining your reasons.
(a) y=3x"—4x—-1

(b) y=-2x*—4x

() y=—x*—4x+2

Y ) Y

Vi

4
Graph B is the only positive o Graph B shows a positive quadratic, so graph B ¢
quadratic. corresponds to equation (a). j
P
We can distinguish between a Graph A has a positive y-intercept, o graph A f
the other two graphs by their corresponds to equation (c). Graph C corresponds 11
y-intercepts. to equation (b). J
S PV »f‘-_f—-‘r‘ . e a A f,_ ‘AM.,._\_ﬁ__A“‘J
N .
Although we are mainly concerned with investigating how the
features of a graph are determined by the coefficients in the ’* Finding the
equation, it is often useful to be able to do the reverse. In other JF P8 equation of a

given graph is

important in
mathematical modelling,
where often a graph is
generated from experimental
data and we seek an
equation to describe it.

words, given a graph, can we find the coefficients? The following
example illustrates how to tackle this type of problem.

- © C_‘ambri.cjg.e University Press 2012. i _oadd il 1 Quadratic functions 3
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The graph shown below has the equation y = ax*— 6x + c.

Y

(0,2)

™ I D= f s \ !

P [ Worked example 1.2

Find the values of ¢ and a.

c is the y-intercept. * The y-intercept of the graphis (0, 2),s0 c =2 4:
The coordinates of the vertex*® The vertexis at x =1and y = -1, s0 1}
need to satisfy the ec}:uohon EF L = a(l2—6(1)+2 J
the graph. Aa—4 ?J
a=3 g
d
eV Y'Y fwrh’**’*‘-\‘ JI‘AM‘H*“"J
\ A
The shape of the graph and the position of the y-intercept are
the only two features we can read directly from the quadratic
equation. We may also be interested in other properties, such as
« the position of the line of symmetry
o the coordinates of the vertex
o the x-intercepts.
In the next two sections we will see how rewriting the equation
of the graph in different forms allows us to identify these
features. In some of the questions below you will need to find
them using your calculator.

4 Topic 2: Functions and equations
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. Exercise 1A

1. Match the equations to their corresponding graphs.

(i) A: y=—x*-3x+6 B: y=2x*-3x+3 C:y=x*-3x+6
y Y y
@ ® ®
6 6
\ 3
(ii) A: y=—x+2x-3 B: y=—x>+2x+3 C:y=x*+2x+3
Y Y )
@ @ / ®
3/ 3
T T T

1A

2. Write the following quadratic expressions in the , \ See Prior Learning

form ax?+bx+c.

ti K th
0 ey ey Kt
(b) () —4(x+2)(4—x) (i) —(1— x)(2 X) need to  review
(© () 3(x—1)+3 (i) 4(x+2) - the  technique  of

) () —4(x— 1)2 1 (i) —2(x+ 2) 3 expanding brackets.
3. Find the y-intercept of the graph of each equation.

(@) () y=2(x-1)(x+3) (i) y=3(x+1)(x—1)

(b) (1) y=-3x(x-2) (ii) y=-5x(x—-1)

() () y=—(x—1)(x+2) (i) y=-3(x-1)(x+2)

(d G) y=2(x-3)+1 (i) y=5(x-1)-3

J ©(;mbri.che University Press 2012. F7 VORLY Y 7 LY B W Quadratic functions Sis
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4. The diagrams show quadratic graphs and their equations. Find the value of ¢

in each case.

Y

y=a2—-2r+c

(a) (i)

5
(b) (i)

-3
(o) ()

y=—322+c

\

(ii) y
\ y=z?—z+c
\/
(11) y=212 31+ ¢
RV
(ii) 4

5. The diagrams show quadratic graphs and their equations. Find the value of a

in each case.

() (1)

Y

y=ar?— 12z +1

/.

Topic 2: Functions and equations v

(2-11)

(ii) y

y=ar?—4x —3

~ © Cambridge University Press 2012.
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(b) (1) y=ar? -4z — 30 (ii) Y= ax® — 5x

|/

X
0 1
() (1) y—ar+6z+9 (ii) = az® 42
/ . /TN N

—_
(oY)
—_
no

6. The diagrams show graphs of quadratic functions
of the form y = ax? + bx +c. Write down the value
of ¢ and then find the values of a and b.

In this question you may need to
solve simultaneous equations.
See Prior Learning section Q<1
on the CD-ROM if you need a

reminder.
(@) (1) Y (ii) Y
\
\ /. \ x
N_3
—10
(b) (@) y (ii) y

H

y
T
_

1.© (;mbri-d‘w University Press 2012. Iy L L] iQUﬂdrtic f nctions /
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7. For each of the following quadratic functions, find the
coordinates of the vertex of the graph.

(a) (i) y=3x*—4x+1 (i) y=2x>+x—-4
(b) (i) y=-5x*+2x+10 (ii) y=—x*+4x-5

8. Find the x -values for which y=0.
(a) (i) y=3x"—4x-3 (i) y=4x*+x-3
(b) (i) y=4x+2—x? (i) y=x+5-2x2
() (i) y=-2x*+12x-18 (ii) y=2x*-6x+4.5

9. Find the equation of the line of symmetry of the parabolas.
(a) () y=x"—4x+6 (ii) y=2x*+x+5
(b) (i) y=4+3x—2x? (ii) y=2-x+3x?

10. Find the values of x for which
(a) (i) 3x*+4x—-7=15 (i) x*+x-1=3
(b) (i) 4x+2=3x2 (i) 3-5x=x2+2

The completed square form
y=a(x—h)*+k

It is often useful to write a quadratic function in a different
form.

Worked example 1.3 Every quadratic function can be written in the form

]> below shows how to ]> y=a(x— h)2 + k. For example, you can check by multiplying

1Y 9
and k. out the brackets that 2x?> —2x—4= Z(x - 5) -3 This second

form of a quadratic equation, called the completed square form,
allows us to find the position of the line of symmetry of the graph
and the coordinates of the vertex. It can also be used to solve
equations because x only appears once, in the squared term.

We know that squares are always positive, so (x — h)2 20.1t
follows that for y =a(x—h)’ +k:

o ifa>0, then a(x—h)2 >0 and so y = k; moreover, y =k only
when x=h

o ifa<0, then a(x —h)2 <0 and so y < k; moreover, y = k only
when x = h.

Hence the completed square form gives the extreme (maximum
or minimum) value of the quadratic function, namely k, as

8  Topic 2: Functions and equations
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well as the value of x at which that extreme value occurs, h.
The point at which the extreme value occurs is called a turning
point or vertex.

KEY POINT 1.2

A quadratic function y = a(x — h)* + k has turning point
(h, k) and line of symmetry x = h.

For a>0, y>k for all x.

For a<0, y <k forall x.

The next example shows how the functions y, and y, from the
previous section can be rearranged into completed square form.

Worked example 1.3

(a) Write 2x? - 2x — 4 in the form a(x - h)*> + k

(b) Hence write down the coordinates of the vertex and the equation of the line of symmetry
of the graph y, = 2x* - 2x - 4.

]
Expand the brackets. ‘e (a) a(x—h)? + k = ax? — 2ahx + ah? +k f
Compare coefficients with the given «® Comparing coefficients of x?: a = 2 {
expression. Comparing coefficients of x: 2ah =—-2 J
® i
Buta=2:° S —4h=-2 '3
oh=t ]
2 {
Comparing constants: /
ar + k=—4 ‘
1
@ . f—

Bu’ra=2,h=l:' "E"’k_ 4 )
2 g -
Sk=—— ‘3
2 i
{

® 1
Extract information from the turning ¢ (b) Line of symmetry is x = — and the vertex is J
point form (h, k). (1 9) i
2 N

b . VW NP WOV NSy WY e
g J

We can also use the completed square form to solve equations.
This is illustrated in the next example, which also shows you
how to deal with negative coefficients.

© C;ombrisiq_e Univer§j / Pres§ 291 2 i
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( Worked example 1.4

(a) Write -x* + 4x - 3 in the form a(x - h)* + k

(b) Hence solve the equation y, = - 8

Expand the required form and o (a) a(x—h)?+ k= ax® - 2ahx + ah*+ k
compare coefficients Comparing the coefficients of x*: a = 1
Comparing the coefficients of x:
4 =-2ah
4=2h
& h=2
Comparing constants
—B=ah? +k
—B=—4+k
& k=1

LN_ B At Aot o i mesamemebeem A o A e memtheon ey

B Therefore —x? + 4x -3 =—(x—2)* +1
Isolate the term containing x* (b) Yo =—(Xx=2)"+1
—(x-2¢+1=-6
o —(x-27=-9
- & x-22=9
/ Sx-2=13
; Sx=borx=-1
3 N\ S T WY P
?
M/[ﬂN’l We can now label the lines of symmetry and the coordinates of
g The line of the turning points on the graphs of y, and y,.
" symmeﬂ'\/ (Ond the
' xcoordinate ‘\* fhe Yor=1 Y .o
vertex) can aiso
be found using the Yy =222 — 2z — 4
D 1)
formula X~ 2a' z AL
which is given " /
. the Formula \bQO\f\e*-
We will explain in N 2
/ section 1D where (3, —43) Yp=—a? + 4w — 3/
| this formula comes
1 ( from.
=
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We can also reverse the process to find the equation of a given
graph. If the coordinates of the maximum or minimum point
are apparent from the graph, then it is easiest to write down the
equation in completed square form.

Worked example 1.5

Find the quadratic relationship that Yy
fits this graph.

—11]

d
Since we are given information 0 Maximum point is at (2, 1), so the function must 4
2 {
about the maximum point, we use the be of the form y =a(x—2)" +1 1
completed square form. ::
Use the remaining information to ¢ The y-intercept is at (O, -11). According to our i
find a. function, when x =0, 4
y=a(0-2) +1 3
=4a+1 4
Therefore

4a+1= 11

& a=-3
d
Answer the question S So the relationship is y = =3(x — 2) +1 d
| J
ol A T e s 2 r“"*"wr»u»‘-l

_ ‘ J

. Exercise 1B

1. Write down the coordinates of the vertex of each of the
following quadratic functions.

@ (i) y=(x-3+4 (i) y=(x—-5)+1
(b) (i) y=2(x-2)-1 (i) y=3(x-1)-5
(© G) y=(x+1Y+3 (i) y=(x+7)-3
(d) (i) y=-5(x+2)"—4 (i) y=—(x+1)"+5

r— Cri nir§ Jre§ 29] . F7 IRV 77 (WL 1 N S l ‘quugdidtic fgnctiqgs 1las
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2. Write the following expressions in the form a(x —h)’ +k,

(a) (i) x>2—6x+4 (ii)) x?—-10x+21
(b) (i) x*+4x+1 (i) x2+6x—-3
(c) (i) 2x2—-12x+5 (i) 3x2+6x+10
(d) (i) —x*+2x-5 (i) —x?—4x+1
(e) (i) x?+3x+1 (ii) x?2—-5x+10
) () 2x2+6x+15 (ii) 2x%2-5x-1

3. Find the equation of each graph in the form
y=a(x—h) +k

{ (i) Y b)G)  § (i)

(a) (i) \
. \/ (/‘\) @1

24 x x x 2 T

—

—11]

You are given that y = x> —6x+11.
(a) Write y in the form (x - h) + k.

(b) Find the minimum value of y. [3 marks]

The curve y=a({x+ b)2 + ¢ has a minimum point at (3, 6)
and passes through the point (1, 14).

(a) Write down the values of b and c.
(b) Find the value of a. [4 marks]

a (a) Write 2x2 +4x —1 in the form a(x —h)’ +k.

(b) Hence write down the equation of the line of symmetry
of the graph y =2x? +4x-1.

(c) Find the exact solutions of the equation 2x? +4x—-1=0.
[8 marks]

EXAM HINT

When you are asked to find exact solutions, leave your answer

with roots and fractions rather than evaluating the decimal
equivalent; this means that you should not use a calculator to find
the answer (although you can still use it o check your answer).

12
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The factorised form y = a(x — p)(x — q)

The factorised form is especially useful for determining another
significant feature of a quadratic function, its zeros, defined as
those values of x (if any) for which y = 0. Graphically, they are
the values of x at which the curve crosses the x-axis. They are
also called the roots of the equation a(x — p)(x — q) =0.

For each of the functions y, and y, that we studied earlier, there
are two zeros, as you can see from their graphs. We may be able to
find the values of these zeros by factorising the quadratic function.

&K@\ See Prior Learning

" section N on the
<l CD-ROM for how to <1
factorise quadratics.

KEY POINT 1.3

A quadratic function y = a(x — p)(x — gq) has zeros at x = p
and x = q.

Check that the expression a{x — p)(x —q) does equal zero when
x = p or when x =gq.

Worked example 1.6

Using factorisation, find the zeros of functions y, and y,.

y

@ {

Factorise the quadratic function, taking out the ® y, =2x2 -2x—4 j

common factor 2 first. =2(x2 —x—-2) {

1

=2(x+N(x-2) J

° \

Read off the values of p and q.° The zeros of y, are -1and 2. |

é

° §

Factorise the quadratic function. It helps to take out® Vo =—x?+4x-3 {
the factor of —1 first. = —(x? —4x+3)
=—(x-N(x-23)

-
Read off the values of pand g.* The zeros of y, are 1 and 3.

— ..rjl_' y .

\ ”JJ

oK o .

EXAM HINT
The line of symmetry of the graph is half-way between the

zeros. You can sometimes use this fact to help you factorise
or to check your answer.

J
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In some exam questions you may have to carry out these
procedures in reverse. For example, you could be given
information about the vertex or zeros of a quadratic function
and asked to find the coefficients.

Worked example 1.7

A quadratic function has vertex at (—1,—5), and one of its zeros is 4. Find the equation of the
function in the form y =ax*+bx+c.

P
()
If we can find the other zero, then we can write® Line of symmetry is x = —1 and {
down the factorised form of the function. one zero is 4, 50 the other zero }
Use the fact that the zeros are at an equal distance is —6. J
from the line of symmetry, on either side of it. 3
$ 1
Write down the factorised form; don't forget a. * y=a(x-4)(x+6)
We need to find a. * Vertexis at x = -1and y = -b, so
\
To do this, we use the information about the vertex. —5=a(-1-4)(-1+06)
s —-5=-25a
1
=N a=— i
e d
4
<

1
Hence y = g(x—4)(x+6)

To put the equation in the required form, we need

1
=—(x2+2x-24
to multiply out the brackets. Y 5( )

1,2 24
—x2+—x——
5" 5 5 |

- LV,
e s o AN,

. .

. Exercise 1C

NSOL., SISO

1. Write down the zeros of the following quadratic functions.
(@) (1) (x+2)(x-3) (ii) ( )(x+1)
(b) (i) x(x+3) (ii) 2x(x—2)
(© () 2(5-x)(2+x) (D) 4(1-x)1+x)
(@ @) (2x-1)(3x+5) () (4x-3)(3x+1)

]4 ,;pplc 2“Funct|ons aqd equations JANbd - © Ca[ﬁbridge. University, P . o
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2. By factorising, find the zeros of the following quadratic

functions.

(a) (i) x*+4x-5 (i) x*—6x+8
(b) (i) 2x*+x—6 (i) 3x*—x-10
() (i) 6x*2—7x-3 (i) 8x2—6x-5
(d) (i) 12—x—x? (i) 10-3x—x?

3. For each graph, find its equation in the form y =ax*+bx+c.

() (i) y (ii) 1

\ 1/
v

<

(b) () y (ii)

N A\

T
| L
O./

Y
§ (a) Factorise 2x%+5x—12.
(b) Hence write down the coordinates of the points ,
where the graph of y =2x*+5x —12 crosses the b
x-axis. [5 marks] \ '
T
5 2

This graph has equation y = ax? +bx +c. Find the values
of a, band c. [5 marks]

The quadratic formula and the
discriminant

It is not always possible to find the zeros of a quadratic function
by factorising. For example, try factorising y, = x> —3x —3 and
¥, = x* —3x+3. It seems that neither of these equations can

L Y © 44 L, — 1 i 4 il 7 IRLY B S 1 Qu.ad, atic functions 1




EXAM HINT
Remember that finding

zeros of @ quadratic
function is the same

s solving @ quadratic
equation.

™ ™

o= £ i L

be factorised, but their graphs reveal that the first one has two

zeros while the second has none.

/

€T

Yy, =a>—3r—3

Yp=2*—3x+3

y

Instead of factorising, we can use the following formula to find

zeros of a quadratic function.

KEY POINT 1.4

The zeros of the quadratic function f(x)=ax?+bx +c are

given by the quadratic formula

—b+b* —4dac .
a bl

2

#0

See Fill-in Proof sheet 1 ‘Proving the quadratic formula’ on the
CD-ROM for how to prove this formula.

EXAM HINT

i//x Don't spend too long trying to factorise a quadratic -
use the formula if you are asked to find exact solutions, and

use a calculator (graph or equation solver) otherwise.

See Calculator Skills sheets 4 and 6
how to do this.

311

) =

Worked example 1.8

Use the quadratic formula to find the zeros of x> —5x—3.

.

on the CD-ROM for

() \
As it is not obvious how to® Here a=1 b=-5, c=-3 i
factorise the quadratic expression, 5+ \/(_5)2 —ax1x(-?) ¢
we use the quadratic formula. x= 5 }
5+437 :
2 4
The zeros are >J
= I \
5+V37 554 and 257 _ o541 (3SF)
e ettt 4 o A ,_f"“‘"““».»«z——_."-_f wa ,—““*‘“"‘—___‘WAJ
.
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Let us examine what happens if we try to apply the quadratic

formula to find the zeros of y, = x* —3x +3: EXAM HINT
KA —

In exams You should
cither give exact
answers (such as

ﬂ_) or round
2

3+(-3) —4x1x3 3+J=3
2 2

As the square root of a negative number is not a real number, it
follows that x* —3x+ 3 has no real zeros.

X =

our answers
to 3 significant
figures, unless YOU
are eXP\"C""\y fo

otherwise. )
See Prior Learning

section B on the CD-

Worked example 1.8 is an example of a quadratic function with
two zeros, just as the function y, on page 16. y, is an example
of a quadratic function with no real zeros. It is also possible to
have a quadratic function with one zero.

Looking more closely at the quadratic formula, we see that it
can be separated into two parts:

B —_b+ Vb* —4ac

x=—=
2a 2a

rounding.

You have already met the first term, _—b: x= - is the line of
symmetry of the parabola. 2a 2a

The second term in the formula involves a root expression:
\Vb* —4ac . The expression b* — 4ac inside the square root is
called the discriminant of the quadratic (often symbolised by
the Greek letter A).

As noted above, the square root of a negative number is not a
real number, so if the discriminant is negative, there can be no
real zeros of the function.

If the discriminant is zero, the quadratic formula gives

b b
xX= ey *0, so there is only one root, x = e In this case, the
a a

graph is tangent to the x-axis (meaning that the graph touches
the x-axis rather than crossing it) at a point that lies on the line
of symmetry — the vertex, in fact.

The graphs at the top of page 18 demonstrate the three possible
situations when finding the zeros of quadratic functions.

A
Note that . is the distance of the zeros from the line of
a

symmetry x = Ey

- © (:.‘ambrigg.e University Press 2012 _oadd il £ ]JQUQdEdﬁC functions
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One real zero Two real zeros
Y “y Yy r=—2L
(2 2)y/$24x+6 y=a*—4dz +4 —b—vVA \| VA | VA [ —b+vA
’ A=-8 A= 20 \\ 20 | 20y 2
T x 4 x
(2,0 0 y=a?—4zx
A =16
(27 _4)
r =2 =2 =2
KEY POINT 1.5
For a quadratic function y = ax?+bx + ¢, the discriminant
is A=b*—4ac.
o If A<O0, the function has no real zeros.
o If A=0, the function has one (repeated) zero.
0O o If A >0, the function has two (distinct) real zeros.
| The situation A =0 is often said to produce a ‘repeated root’

or ‘equal roots’ of y = ax* +bx + ¢, because in factorised form
the function is y = a(x — p)(x — p), which gives two equal root
values p and q. An expression of the form (x — p)(x — p) is also
referred to as a ‘perfect square.

s Worked example 1.9
4 Find the exact values of k for which the quadratic equation kx> —(k+2)x+3=0 has a repeated
y root.
[;
¢ a=kb=—(k+2),c=3 {}
=K, = — 5 cC=
- Repeated root means that A=b? —4ac=0. , 3
b So we identify a, b and ¢, and write down the (—k-2)" - 4(k)(3)=0 J
) equation b?—4ac = 0. S K +4k+4-12k=0 3
\
This is a quadratic equation in k. ** = ke—ek+4=0 J
- !
' It doesn’t look as if we can factorise, so use the - BE\J(-8)? —4x1x4 y
quadratic formula. 2 '
. _8+4B
2 d
Vi _8+43 .
. 2 \
Al =4123 1
k - P W . >~ ‘A"‘A“ﬂ_‘__‘“.“IJ
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EXAM HINT

Questions of this type nearly always lead to a quadratic

equation for k.

When A <0, the graph does not intersect the x-axis, so must
lie entirely above or entirely below it. The two cases are
distinguished by the value of a.

KEY POINT 1.6
For a quadratic function y = ax?+ bx + ¢ with A <0:

e ifa>0,then y>0forall x
» ifa<0, then y <0 forall x.

y y
<0
la>T0]

Worked example 1.10

Given the quadratic function y =—-3x?+kx—12, where k >0, find the values of k such that
y<0 forall x.
. . . 0 §
y is a negative quadratic, so y <0 means that the No real roots means A< O:
graph is entirely below the x-axis. This will happen b? —4ac<O
when the quadratic has no real roots. k2 — 4(=3)(-12) <0 J
K? <144 3J
\
o : d
We are told that k>0.*" | i;kjizm& o
. B —

. Exercise 1D

% 1. Evaluate the discriminant of each quadratic expression.

(a) (i) x*2+4x-5 (i) x*-6x—8
(b) (i) 2x*+x+6 (ii) 3x*—x+10
(c) (i) 3x2—6x+3 (i) 9x2—-6x+1
(d) (i) 12—x—x? (i) —x2-3x+10

A— TP (R 1 — l ‘lQ_ugclidticiynctians 19
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\%& 2. State the number of zeros of each expression from Question 1.

\% 3. Use the quadratic formula to find the exact solutions of the
following equations.

(a) (i) x*—-3x+1=0 (i) x*—x-1=0

(b) (i) 3x>+x-2=0 (i) 2x2—-6x+1=0
(c) (i) 4+x-3x2=0 (i) 1-x-2x%2=0
(d) (i) x?—-3=4x (i) 3—x=2x2

4. Find the values of k for which
(a) (i) theequation 2x? —x+ 3k =0 has two distinct real roots
(ii) the equation 3x2 +5x —k = 0 has two distinct real roots
(b) (i) the equation 5x> —2x+(2k —1)=0 has equal roots
(i) the equation 2x2 +3x —(3k+1)=0 has equal roots
(¢) (i) theequation —x*+3x+ (k - 1) =0 has real roots
(ii) the equation —2x*+3x — (2k + 1) =0 has real roots
(d) (i) the equation 3kx*>—3x+2=0 has no solutions
(ii) the equation —kx? +5x+3 =0 has no solutions

(e) (i) the quadratic expression (k—2)x*+3x+1hasa
repeated zero

(ii) the quadratic expression —4x* +5x +(2k —5) has a
repeated zero

(f) (i) the graph of y = x> —4x+(3k+1) is tangent to the
X-axis

(ii) the graph of ¥ =—2kx*+x—4 is tangent to the x-axis
(g) (i) the expression —3x? + 5k has no real zeros

(ii) the expression 2kx? —3 has no real zeros

Find the exact solutions of the equation 3x*> =4x+1. [3 marks]

>

1
a Show that the graph of y = 4x* + x +— has its vertex on the
x-axis. 16 [3 marks]

Find the values of parameter m for which the quadratic
equation mx? —4x +2m = 0 has equal roots. [5 marks]

B Find the exact values of k such that the equation
—3x2+ (2k + l)x —4k =0 is tangent to the x-axis. [6 marks]

(_) él'ppic ZEIFunct:i?ns.qu equations b JaN L alc_: Uvgity.Pt_ass.O!.! Nbd bl




g Find the set of values of k for which the equation
x? —6x+ 2k =0 has no real solutions. [5 marks]

Find the range of values of the parameter ¢ such that
2x% =3x+(2c—1)>0 forall x. [5 marks]

Find the possible values of m such that
mx?+3x—4<0 for all x. [5 marks]

The positive difference between the zeros of the
quadratic expression x* + kx + 3 is J69. Find the
possible values of k. [4 marks]

Intersections of graphs
and simultaneous equations See Prior Learning
section Q on the CD-

Whenever we need to locate an intersection between two graphs, <l ROM for revision 0f<1
we are solving simultaneous equations. This means that we are linear simultaneous
trying to find values of x and y that satisfy both equations. equations.

You can always find the intersections of two graphs by using

a calculator. Remember, however, that a calculator only gives
approximate solutions. If exact solutions are required, then we
have to use an algebraic method. In many cases the best method
is substitution, where we replace every occurrence of one
variable in one of the equations by an expression for it derived
from the other equation.

EXAM HINT
ExAT —

\\é§ See Calculator
Skills sheet 5 on the
CD-ROM for how to

find coordinates ©
intersection points.

Worked example 1.11

Find the coordinates of the points of intersection between the line y =2x —1and the parabola
y=x*-3x+5.

{

At intersection points the y-coordinates for the two S X2 —Bx+5=2x—1 t{
curves are equal, so we can replace y in the first ]
equation by the expression for y from the second J

equation. N
—
.
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' continued . . . >
o §

This rearranges to a quadratic equation. Try to® xX?-5x+6=0
factorise it. In this case, factorisation gives the (x-2)(x-3)=0 {J
x-coordinates of the intersection points. N =2 or ]
. E
The corresponding y-coordinates can be found ® y=2x—1 ;
by substituting the x-values back into one of the =2= y=2%x2-1=3 f
original equations (both should give the same =3= y=2x3-1=5 )
answer). Let us pick the first equation as it is The coordinates of the J
simpler. intersection points are (2, 2) !
and (3, D). J
P L,JI‘*“A-MH M,l

\_ .

Sometimes we only want to know how many intersection
points there are, rather than to find their actual coordinates.
The discriminant can be used to determine the number of
intersections.

o
Worked example 1.12

Find the value of k for which the line with equation y = x —k is tangent to the parabola
y=x2

two graphs intersect at only one point.

The number of infersections between the line and the
parabola will depend on the value of k. This makes sense,
as varying k moves the line up and down, so sometimes it \
will intersect the parabola and sometimes it won't.

i
<€
o |
Let us try to find the intersections. ® Line equation: y = x — k }
At intersection points the y-coordinates for the two Substitute into the parabola :

curves are equal, so we can replace y in the second equation y = x* to get
equation by the expression for y from the first equation. X—k=2x?

i
The line being tangent to the parabola means that the {j
]

()
This is a quadratic equation; write it in the form of ® X —x+k=0

quadratic expression equal to zero. j
4

For this to have only one solution, we need A=0. One solution = b* —4ac = O
(=1 -4(N(K)=0
1-4k=0 7
:'r ( k =% ﬂ
A irlons, e J
. ——— v
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EXAM HINT

Questions about the number of intersections are often
(though not always) solved using the discriminant.

Worked example 1.12 illustrates how a geometrical problem (intersections of two curves)
can be solved by purely algebraic methods. There is a whole branch of mathematics
studying such methods, called analytic geometry. It was developed in the 17th century
by the French philosopher and mathematician René Descartes. Establishing a link

between geometry and algebra was a major step in the development of modern mathematics.

o

The parabola belongs to a family of quadratic curves called ‘conic sections’, which also
8% includes the circle, the ellipse and the hyperbola. There are many fascinating and beautiful
results concerning conic sections, and a lot of these can be investigated using properties of
the quadratic function.

. Exercise 1E

% 1. Find the coordinates of intersection between the given
parabola and the given straight line.

(a) (i) y=x*+2x—-3and y=x-1
(ii) y=x*—4x+3and y=2x-6

(b) (i) y=—x*+3x+9and2x—y=3
(ii) y=x*-2x+8andx—y=6 )

2. Solve the following simultaneous equations:
(a) () x—=2y=1 3xy—y*=8
(ii) x+2y=3, y*+2xy+9=0
(b) (i) xy=3, x+y=4
(ii) x+y+8=0, xy=15
(o) () x+y=5 y=x*-2x+3
(ii)) x—y=4, y=x>+x-5

Find the coordinates of the points of intersection of the
graph of y = x? —4 and the line y =8 —x. [6 marks]

Solve the simultaneous equations

y=2x*-3x+2and3x+2y=5 [7 marks]

© C__ambri.cjg.e University Press 2012.
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A circle has equation x? —6x+ y*> -2y —-8=0.
(a) Show that the x-coordinates of the points of

intersection of the circle with the line y = x — 8 satisfy

the equation x? —12x+36 =0.
(b) Hence show that the line is tangent to the circle. [5 marks]

% a Find the exact values of m for which the line y = mx +3 and
the curve with equation y = 3x*> —x + 5 have only one point
of intersection. [6 marks]

Using quadratic functions to
solve problems
Quadratic functions are very common in applications of

mathematics. Many natural phenomena can be modelled
using quadratic functions. For example: the motion of a

O projectile follows a path which is approximately a parabola;
3 the elastic energy of a particle attached to the end of a spring
1] is proportional to the square of the extension; electric power
in a circuit is a quadratic function of the voltage. Properties
of quadratic functions are also widely used in optimisation
problems, where a certain quantity has to be maximised or
minimised. In this section we look at some typical examples.
) Worked example 1.13
; A rectangle has perimeter 100 cm. What is the largest its area can be?
()
: The area of a rectangle is length x width. ® Let x = length, y = width. Then
- Introduce variables so we can write equations. Area = xy

It is impossible to see from this equation alone ¢
what the maximum possible value of the area is.
However, we can proceed by writing an equation
relating x and y, using the known perimeter.

Perimeter = 2x 4+ 2y =100

b This means that we can express the area in terms® 2y =100 -2x
of only one of the variables. = y=50-x
. Area=x(50 —x)
=50x —x?
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continued . ..

The area function is a negative quadratic, so®
we know how fo find its maximum value (the
y-coordinate of the vertex).

The x-coordinate of the vertex is
b

22
50

2(+)
=25 ]
Negative quadratic, so the vertex

=

is a maximum point with
f(25) =50 x 25 - 25¢ =625

Therefore the maximum area is

This is an example of constrained optimisation: we are trying to find a best possible
solution while keeping some quantity fixed. It is intuitively clear that a short and wide or
a tall and thin rectangle will have very small area, so we expect the largest area to occur

somewhere in between.

A related problem is finding the minimum possible surface area for an object of fixed volume.
Examples of this can be seen in nature: snakes have evolved to be long and thin in order to
maximise their surface area - they are cold-blooded reptiles and need to gain as much heat as
possible from the sun through their skin; polar bears, who live in the Arctic, avoid losing too much
heat through their skin by adopting a rounder shape, which minimises the surface area for a

given volume.

You may have noticed that in Worked example 1.13, the rectangle with the largest area is
&% actually a square (with length = width = 25). It turns out that of all planar shapes with a
fixed perimeter, the circle has the largest possible area. This so-called ‘isoperimetric
problem’ has several intriguing proofs and many applications.

The next example presents an application to vertical motion
under gravity. If we ignore air resistance, then the height above
the ground of an object thrown vertically upwards will be a

quadratic function of time.

Note that the path of the projectile can be represented by a

similar parabola, as we shall see in Worked example 1.15.

© Cambridge University Press 2012.
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o Worked example 1.14

n. : o i r er L

\

A ball is thrown vertically upwards from ground level and moves freely under gravity. The
height h of the ball above the ground can be modelled by the equation h = 9.5t —4.9¢%, where t
is the time, measured in seconds, after the ball is thrown.

(a) How long does the ball take to return to the ground?
(b) What height does the ball reach?

[
When the ball returns to the ground, h=0, ¢ (a) 95t-49t2=0 !
so we are looking for roots of the quadratic =  t(95-49t)=0 {’
function. In this case, it is easy to factorise 95 :
the quadratic. = t=0ort= E =194(3 5F)
]
t=0 is the time when the ball left the ground. ¢ <. the ball returns to the ground after 1.94s.
i
We are now looking for the maximum (b) Vertexis at ;r
point (vertex) of the quadratic function. ot "
2a «
___95 ,'
2x(—4.9) (
=0.969 g
h=9.5(0.969) — 4.9(0.969)2 J
= 4.60 (35F) 3
.. the maximum height is 4.60 m. ‘;
\ VLY e Iy W O v Ve —itns

A related problem is to describe the path of a projectile. In the
absence of air resistance, this path is a parabola. The following
example illustrates how we can use this fact. It also shows how
to set out your working when you are using a calculator to
analyse graphs.

Worked example 1.15

A ball is projected horizontally from a window 8 m above ground and then moves freely under

gravity. The height of the ball above the ground, in metres, is given by y=8- 2 where x is
u
the horizontal distance from the window and u is the initial speed of the ball (in metres per

second).
(a) The ball covers a horizontal distance of 18 m before hitting the ground. Find the value of u.

(b) Find the horizontal distance that the ball covers while it is more than 4 m above ground.
—_—

B

~ © Cambridge University Press 2012.
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continued . . . .
@

1
<
The ball hits the ground when y =0, so* (a) y=0 when x =18 $
we know that y =0 when x = 18. 182 }
O0=56-—- <
2u §
2
= 187 =20.25 1‘
16 {
We can draw the graph and find the ** (b) J
values of x for which y > 4. To do this, x? ‘
. . y=6- l
we need the intersection of the graph 405 y
with the horizontal line y = 4. e gz e i
Y
y=8—2
«
§
4
4
0 12.7 ‘ T‘J
)

x=127m (3 SF) (from GDC) |
B b A .}‘M%Mw

\_
. Exercise 1F

The sum of two numbers is 8 and their product is 9.75.
What are the two numbers? [6 marks]

% A rectangle has perimeter equal to 12 cm. Let xcm be
the length of one of the sides. Express the area of the
rectangle in terms of x, and hence find the maximum
possible area of the rectangle. [6 marks]

% A farmer wishes to fence off a rectangular area adjacent to
a wall. There is an existing piece of fence, 10 m in length,
that is perpendicular to the wall, as shown in the diagram.

The length of the new fencing is to be 200 m. Let x and T

y be the dimensions of the enclosure. 10

FENCE

(a) Write down an expression for the area of the
enclosure in terms of x only.

(b) Hence find the values of x and y that produce the WALL
maximum possible area. [6 marks]

v — 'abri Pre§ 29] 2..,, (o N UL L ] JI.Q}E‘E’.EGH!EH“C“QQS 27
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@ A ball is thrown upwards from ground level, and its height
above the ground (in metres) is given by the equation
h=8t—4.9t%, where t is the time (in seconds) after the ball
is thrown.

(a) When does the ball return to the ground?

(b) Find the maximum height of the ball. [4 marks]

5. The enclosure ABCD consists of straight lines AB and CD
together with a semi-circle BC. ABCD is a rectangle with
sides x and y, as shown in the diagram. The perimeter of the

B : C enclosure is 60 m.

Show that the area of the enclosure is given by
1
A=30y- gny?

Show that the maximum possible area of the enclosure
is when x =0 (so that the enclosure is a semi-circle).

Find the possible dimensions of the enclosure so that its
area is 200 m>. [7 marks]

G A computer salesman finds that if he sells # computers, he
can make a profit of $(200—4n) per computer. How many
computers should he sell in order to maximise his profit?
[5 marks]

Summary
Quadratic functions have the general form f(x)=ax?+bx+c, wherea # 0.

The graphs of quadratic functions are parabolas, which have a single turning point or vertex.
This point is either a minimum or a maximum point. The following table summarises their main
features and how these are determined by the coefficients a,b and c.

Feature What to look at Conclusion

Opverall shape — does parabola | Sign of a a>0
open upward or downward?

— minimum point

J N L ~ © Cambridge University Press 201 2
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continued . . .

Feature

What to look at

Conclusion

a<o

— maximum point

y-intercept

Value of ¢

y-intercept (0, c)

Vertex (or turning point)

Completed square form

y=alx—h?*+k

Vertex (h, k)
fora >0, y >k for all x.
fora <0, y<kforall x.

Line of symmetry

Completed square form or
quadratic formula

x=horx=-——
2a

Zeros

Factorised form
y=alx—p)(x—q)
or quadratic formula

e -b+t\b* —4ac

2a

Roots p and g, x-intercepts
(p, 0) and (g, 0)

The number of real roots

Discriminant

A =b?—4ac

A >0 = two distinct real roots
A =0 = one root (repeated
root, equal roots)

A <0 = no real roots

It is also possible to determine some of the coeflicients from the graph: the y-intercept, the

ordinate of the vertex, the zeros and the shape of the graph (positive or negative a) can be read

directly from the graph.

We can solve quadratic equations by factorising, completing the square, applying the quadratic

formula or using the graphing and equation solver programs on a calculator.

using the method of substitution.

model the situation using a quadratic function.

© C;ambriég_e University Press 2012.
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We can also solve simultaneous equations using the points of intersection of two graphs, or

Quadratic functions can be used to solve problems, especially optimisation problems, if we
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Introductory problem revisited

A small dairy farmer wants to sell a new type of luxury cheese. After a fixed set-up cost
of $250, he can produce the cheese at a cost of $9 per kilogram. He is able to produce
up to 400 kg, but he plans to take advance orders and produce only what he can sell.
His market research suggests that the amount he would be able to sell depends on the
price in the following way: the amount decreases proportionally with the price; if he
charged $20 per kg he would not sell any, and if the cheese was free he would ‘sell’ the
maximum 400 kg that he could produce. What price per kilogram should the farmer
set in order to maximise his profit?

P =—2022 + 580z — 3850

(14.5,355)

Let x (in dollars) be the selling price per kilogram of cheese, and
let m be the amount produced (and sold). Then the production
cost is $(250+9m) and the amount of money earned is $(mx),
giving a profit of P =mx—(250+9m) dollars.

The amount m depends on x. We are told that the relationship
is ‘proportional; i.e. linear; when x = 20, m = 0 (no one would
buy the cheese if it cost $20/kg), and when x = 0, m = 400 (the
farmer would be able to ‘sell’ all 400kg of cheese that he could
produce if it were free). Hence m is a linear function of x (a
straight line graph) that passes through the points (0, 400) and
(20, 0). We can then find that its equation is m = 400 —20x.

So the total profit is

P=mx—(250+9m)
= (400 —20x) x — (250 +9(400 - 20x))
= —20x> +580x — 3850

This is a quadratic function of x. Since it is a negative quadratic,
its vertex is a maximum point. The x-coordinate of the vertex is

given by the equation for the line of symmetry, x = —i. So the

maximum profit is achieved when 2a
580
X=—— =145
2%x(=20)

Thus, to maximise profit, the farmer should sell the cheese at
$14.50 per kilogram.

We can also graph the function to see how the profit depends
on the selling price. Outside the range of x-values shown on the
graph, the farmer would make a loss.

30  Topic 2: Functions and equations
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Mixed examination practice 1

Short questions

\% (a) Factorise x? +5x —14.
(b) Solve x> +5x—-14=0. [4 marks]

The quadratic function y =(x— a)2 +b has a turning point at (3, 7).
(a) State whether this turning point is a maximum or a minimum point.

(b) State the values of a and b. [3 marks]

The quadratic function y =a(x— b)2 + ¢ passes through the points (-2, 0)
and (6, 0). Its maximum y-value is 48. Find the values of g, band c. ~ [6 marks]

e A quadratic function passes through the points (k, 0) and (k +4, 0). Find

in terms of k the x-coordinate of the turning point. [2 marks]
Yy
The diagram represents the graph of the function \ /
fix (x-p)(x-q)

2

[y

(a) Write down the values of p and q.

(b) The function has a minimum value at the point
C. Find the x-coordinate of C. [4 marks]

C
(© IB Organization 1999)

a The diagram shows the graph of the function y = ax* + bx + c.

Complete the table below to show whether each y
expression is positive, negative or zero.
Expression Positive Negative Zero ’
A
C
b? - 4ac
B

[4 marks]
(© IB Organization 2000)
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% (a) Write x> —10x+ 35 in the form (x—p)2 +q.

1

(x2 —10x+ 35)3 .
[5 marks]

(b) Hence, or otherwise, find the maximum value of

e Find the exact values of k for which the equation 2kx +(k+1)x+1=0 has
equal roots. [6 marks]

a Find the range of values of k for which the equation 2x* +6x +k =0 has
no real roots. [6 marks]

% Find the values of k for which the quadratic function x*> —(k+1)x+3 has

only one zero. [6 marks]

Let o and B denote the roots of the quadratic equation x* —kx+(k—1)=0.
(a) Express o and B in terms of k.
(b) Given that o2 + *> = 17, find the possible values of k. [6 marks]
Long questions

1. The diagram shows a square with side xcm and a circle with radius y cm.

Write down an expression for the perimeter
(i) of the square

(ii) of the circle

The two shapes are made out of a piece of wire of total
length 8 cm. Find an expression for x in terms of y.

Show that the total area of the two shapes is given by
A:g(n+4)y2 —omy+4

If the total area of the two shapes is the smallest possible,
what percentage of the wire is used for the circle?
[11 marks]

Topic 2: Functions and equations FRYA y ~ © Cambridge University Press 2012.
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2. Two cars are travelling along two straight roads which are perpendicular to
each other and meet at the point O, as shown in N
the diagram. The first car starts 50 km west of O T
and travels east at a constant speed of 20 km/h.
The second car starts 30 km south of O at the
same time and travels north at a constant speed

of 15km/h. _} 1)

Show that at time t, the distance
d between the two cars satisfies |:4j

d? = 625t —2900t + 3400.

Hence find the closest distance between the
two cars. [9 marks]

3. The graph of y = x> —6x+k has its vertex on the x-axis. Find the value
of k.

A second parabola has its vertex at (=2, 5) and passes through the
vertex of the first graph. Find the equation of the second graph in the
form y=ax*+bx+c.

Find the coordinates of the other point of intersection between the
two graphs. [12 marks]
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In this chapter you
will learn:

some rules for dealing
with exponents

about a class of
functions where the
unknown is in the
exponent

about the number
e and some of its
properties

about the inverse of an
exponential function,
called a logarithm

the rules of logarithms

about graphs of
logarithms

how to use logarithms
to find solutions to
simple exponential
equations.

positive exponents.

: See Prior Learning
<]~ section C on the CD-
ROM for a review of

Exponents and
logarithms

Introductory problem

A radioactive substance has a half-life of 72 years (this

is the time it takes for half of the mass, and hence
radioactivity, to decay). A 1kg block of the substance is
found to have a radioactivity of 25 million becquerels (Bq).
How long, to the nearest 10 years, would it take for the
radioactivity to fall to 10000Bq?

Many mathematical models (of biological, physical and financial
phenomena, for instance) involve the concept of continuous
growth or decay, where the rate of growth or decay of the
population of interest depends on the size of that population.
You may have encountered similar situations already - for
example, for a bank account earning compound interest, the
increase in the amount of money each year is given by the
interest rate multiplied by the starting balance. Such situations
are governed by exponential functions, which you will learn
about in this chapter.

Laws of exponents

The exponent of a number tells you how many times the
number is to be multiplied by itself. You will have met some of
the rules for dealing with exponents before, and in this section
we shall revisit and extend these rules.

raising to a power is sometimes referred to as ‘exponentiating’.

An exponent is also called a ‘power’ or an ‘index’ (plural: indices). The operation of "’*
. &
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A number written in exponent form is one which explicitly
looks like:

where n is referred to as the exponent

n
a a is referred to as the base

The expression a” is read as ‘a to the exponent #’ or, more
simply, ‘a to the n’

Although we said earlier that an exponent shows how

many times a number is multiplied by itself, if the exponent

is a negative integer this interpretation would not apply.
Nevertheless, we would like to give a meaning to negative
integer exponents; to do this, we first need to look at the rules of
exponents in more detail.

If the exponent is increased by one, the value of the expression
is multiplied by the base. If the exponent is decreased by one,
the value of the expression is divided by the base. It follows that
the value of a° must be consistent with the value of a' divided by
a, thatis, a® =a''=a'+a=1

KEY POINT 2.1

If we continue dividing by the value of the base, we move into
negative exponents:

1
a'l=a"+a=— For example, 37! =—

1
Tra=— For example, 372 = 5

Generalising this gives the following formula:
KEY POINT 2.2

a'=—
an

P .

© Cambri e Univer§i|x Pres§ ZQ1 2.._
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Remember that )
a' =a. |
-

Mathematics is often
considered a subject
without ambiguity.

However, if you ask what

the value of Q0 is, the answer is
undetermined - it depends upon
how you get there!

1 is called the

X

> reciprocal  of x. > g
We will study this
in more detail in

section 4E.
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We now look at an example of what can happen when we apply
operations to exponents.

Worked example 2.1

Simplify:

(a) a*xa* (b) a*+a* (¢ (a“)3 (d) a*+a®

()
The exponent counts the number * (a) a°xa*=(axaxaxa)x(axaxa) =g’
of times you multiply the base to
itself.

Mm‘-\p A

Divide top and bottom of the o TEREE

fraction by a three times. AXAXA 1 _ -
AXAXAXa a |
1

1 1

Y

(v) @°+a' =

Ane A, e

()
Use the same idea as in part (a).* ) (a*)” = a* xa*xa* =g

. . @
All we can do here is factorise.®

-
R VY

(d) a*+a®=a(@a+"1)

P — ad
Naemde PV e WOV _VSPYY W e

\ W,
It is questionable whether in part (d) of the example we have actually simplified the

expression. Sometimes the way mathematicians choose to ‘simplify’ expressions is

governed by aesthetics, i.e. how the result looks, as well as how useful it might be.

2 Worked example 2.1 suggests some rules of exponents.
]
: KEY POINT 2.3
am Xaﬂ — am+n
KEY POINT 2.4
1 am =5 an — aM*ﬂ
{
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KEY POINT 2.5
(am)n = amxn

With these rules, we can interpret exponents that are fractions

(rational numbers) as well.
1

Consider a2 . If the laws of exponents hold true for fractional
exponents, then we must have

+

N | =

1
=q:?

N =
0| =

azXxa =a =a

2
1 1
In other words, (m] =g; so a2 is a value which, when

squared, gives a. This is, by definition, the square root of a.

! 1y}
By a similar argument, a3 is a value such that (a-”) =a, and
1

so a3 is the same as the cube root of a. We can continue on
1

to larger powers and roots; for example, 325 = /32 =2 since
25 =32.

KEY POINT 2.6

1
an means the nth root of g, that is, 4/a.

m

We can combine Key points 2.5 and 2.6 to interpret a». We can

m 1 1

- . . mxX— —Xm .
express a in two different ways, a » or a» , and thus obtain

the following rule.

KEY POINT 2.7

FAa—") © Cambridge University Press 2012
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EXAM HINT
ExAT —

These rules otre

t given in he
r\ggrr?\u\c booklet,
so make sure that
you learn them an
can use them 1n
both directions- For
oxample, if you s€€
26, know that you

can rewrite it @S
either (23)2 or

(22} and if you s€°
(2°), recognise 1t &%
6. Both ways W!

be important!

Z_Expo‘li[erltigrd |o.g_0| rithms 37




]

2
Evaluate 645 .

Use an = (Q/a) 64% = (5 64)2
=42 4
=16 )

YoM ! ™ i r-" ' P

8 [ Worked example 2.2

\‘NM_AMMM“*J-’JI_‘MM“W‘J J
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You must take care when expressions with different bases are to
be combined by multiplication or division, for example 2*x62.
The rule ‘multiplication means add the exponents together’
(Key point 2.3) is true only when the bases are the same. You
cannot use the rule to simplify 2°x 6%

There is however, another rule that works when the bases are
different but the exponents are the same. Consider the following
example:

32x52=3%X3x5x%5
=3X5X3X5
=15x%15
=152

This suggests the following rule.

KEY POINT 2.8

arxb" = (ab)"

Similarly, we can divide two expressions with the same exponent:

32 3x3 3 3 (3]2
— — X_ — —

52 5%x5 5 5 \5

KEY POINT 2.9
a"=+b"= (EJ
b

N
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Below is a summary of the rules of exponents covered so far. (%
If the base is the same and the exponents are different:
Multiplication: keep the base the same, add the exponents anxar = gmtm
Division: keep the base the same, subtract the exponents a” +—a" =am"
If the exponent is the same and the bases are different:
Multiplication: keep the exponent the same, multiply the bases a" xb" = (ab)’ »
Division: keep the exponent the same, divide the bases 2Y’
ar+b" = (—J
b
Any base to the exponent zero equals one a’=1
Any base to the exponent one is equal to the base itself ad=a
Any base to a negative exponent is the same as the reciprocal of the 1
same base to the equivalent positive exponent a "= an
Any base to an exponent, all raised to another exponent, is the same (am)" = gmxn
as that base to the product of the exponents
A base to a fractional exponent is a combination of an nth root and a m m
power an = (‘/;) =~a"

You can use these rules to solve equations where the unknown
is in the exponent.

Worked example 2.3 )

Solve the equation 4%+ =87,
If both sides had the same base, * AE = BT }
we could compare the exponents. (22241 = (237 ;
Notice that 4 and 8 are both D4x+2 _ D21-Bx "[
powers of 2. ]
Now we can equate the exponents. 4x+2=21-2x r)
& 7x=19 1
19 \
& x=— J
/4 . J
e PV .rh!_‘rh"““‘h“-—»' !f‘ B ORI
\_ W
J
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. Exercise 2A

% 1. Simplify the following, leaving your answer in exponent form.

(@) (i) 6*x6° (ii) 5°x5°
b) (i) a*xa’ (i) x°xx?
(c) (i) 7V'x714 (i) 57572
(d) (i) x*xx? (i) x%xx>
(e) (1) g7°xg”? (ii)) k2xk™®

2. Simplify the following, leaving your answer in exponent form.

(a) (i) 6*+6° (i) 5%+5°
(b) () a*+a® (i) x®+x°
(¢) (i) 5 +52 (i) 7'=+7
(d) i) xt+x72 (i) x*=+x-?
(e) (i) 25+27 (i) 376+ 38
() @) g7+g” (i) k72 +k°
7> 3. Express the following in the specified form.
@ () (2°)" as 2’ (i) (32) as 3"
(b) (i) (5)" as 5" (i) (772) as 7
© () (112)" as 11" (i) (137)" as 13"
(d) (i) 4x(2°) as 2" (i) 35x(9)" as 3"
(e) (i) (42)'x32 as 6" (i) (6°) +(22) as 3"

% 4. Simplify each of the following, leaving your answer in
exponent form with a prime number as the base.

(@ () 4 (i) 97
(b) () 8 (i) 16°
(©) () 4°x8’ (i) 9°+27°
(d) (i) 47°x8 (i) 37+97

(1Y (1Y
(e) (i) (ZJ (ii) (5)
® () (%) +G) (ii) 9%{%)

5. Write the following without brackets or negative exponents.
@ @) (20) i) (3x)
(b) () 2(x")’ i) 3(x)’
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9a’ 8(2x)
@ @ (2x)" (ii) (3]
y
() () 2% (i) —
y

R o () ()
oo (2] w2
(@ () (3] +(£)_ (ii) (EJ +(2xi)

q 2 x X

Evaluate the following, leaving your answer in simplified
rational form where appropriate.

(a) (1) 3x272 (i) 7x3™
(b) (i) (3x2)° (i) (5%2)°
(¢) (i) 10°x57 (i) 122x4°
(d) (1) 6+2° (i) 672+27
Evaluate the following, leaving your answers as a fraction
where appropriate.
(a) (1) 4% (ii) 8§
(b) (i) 10000°° (i) 81°*#
(1Y (o)
(© @ (EJ (ii) (E]
(d) () 8§ (ii) 252
(e) (i) 100* (i) 8107
NEERt (8
() @) (EJ (ii) (5)
(g) () 83 (i) 492

(16)> (o)
(h) ) (3] (i) (E)

8. Simplify the following.

4

@ @) (+) (i) ()

~ © Cambridge University Press 2012. I . 2Exponents and logarithms 4
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(b) (i) (4x)"” (ii) (8x12)’§

~ (27x° % " x4\
(c) () ( ” ) (ii) (F]

) % 9. Solve for x, giving your answer as a rational value.
In section 2G you

will see that there (a) (i) 8*=32 (ii) 25% = é
is another (often | 1

[>> easier) way to solve [>> (b) () — =7 i) =g
equations like these, 49* 16*
by using logarithms (c) (1) 2x3*=162  (ii) 3+5°=0.12
on a calculator.

Suppose that a computer program is able to sort n input
values in kX n'®> microseconds. Observations show that it
sorts a million values in half a second. Find the value of k.
[3 marks]

% A square-ended cuboid has volume xy? where x and
y are its lengths. Such a cuboid for which x =2y has
volume 128 cm?. Find x. [3 marks]

% The volume and surface area of a family of regular solid
shapes are related by the formula V = kA'>, where V'is
given in cubic units and A in square units.

(a) For one such shape, A=81 and V =243. Find k.

(b) Hence determine the surface area of a shape with

volume % cm?®, [4 marks]
% Solve 2x5*1 =250 for x. [5 marks]
% Solve 5+3**2 =14 for x. [5 marks]
% Solve 100** =103*"! for x. [6 marks]
% Solve 16 +2* =2**! for x. [6 marks]
% Solve 6**' =162 x2* for x. [6 marks]
% Solve 43* =2x16*! for x. [6 marks]
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Exponential functions

In an exponential function, the unknown appears in the
exponent. The general form of a simple exponential function is

flx)=a~
We will only consider situations where the base a is positive,

because otherwise some exponents cannot easily be defined (for
example, we cannot square root a negative number).

Here is the graph of y =2~

9 4

e
6 4
5_

34

For large positive values of x, the y-value gets very large
(‘approaches infinity’). For large negative values of x, the
y-value approaches (but never reaches) zero. A line that a
graph gets increasingly close to (but never touches) is called
an asymptote. In this case we would say that the x-axis is an
asymptote to the graph.

By looking at the graphs of exponential functions with different
bases, we can begin to make some generalisations. Try plotting

some exponential functions on your calculator; a few examples

are shown below.

” What is the meaning of
1
B 112 What about

((—1)2)%? And (—1)%? Not

all mathematics is unambiguous!

EXAM HINT
ExAT ——

© . See Calculator

\S?\Z'\\\s sheet 2 on the
CD-ROM for how to
plot graphs on you'
calculator.

You may notice that
the blue curve is

a reflection of the

]>black curve in the]> 8
y-axis. You will see
why this is the case
in chapter 5.

!
Z_Expoqent_s and |o_gorithms 43




Z

o

_/

positive exponential

\x

negative exponential

EXAM HINT
ExA ——

Note that
eXPOnenﬁc\ decay

can be written
either as y =9
with O<a <10

—a* with a>1.
This is because.
for example,

. (Y
3x =(3") {5)

r as

In chapter 5 we
will investigate
how changing the
constants in  a
function affects the
shape and position
of the graph.
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KEY POINT 2.10

For the graphs of y = a*, where a > 0:
o The y-intercept is always (0, 1), because a° =1.

e The graph of the function lies entirely above the x-axis,
since a* >0 for all values of x.

o The x-axis is an asymptote.

e If a>1, then as x increases, so does y. This is called a
positive exponential.

o If 0<a <1, then as x increases, y decreases. This is called
a negative exponential.

Many mathematical models are based on the following property
of the exponential function N = a": as time (¢) increases by a
fixed amount, the quantity we are interested in (N) will rise by
a fixed factor, called the growth factor. Exponential functions
can therefore be used to represent many physical, financial and
biological forms of exponential growth (positive exponential
models) and exponential decay (negative exponential models).

To model more complex situations we may need to include
more constants in our exponential function. A form that is
commonly used is

N = Ba(éj

We can interpret the constants in the following way:
e When t = 0 we have N = B, so B is the initial value of N.

e When t = k we have N = Ba, so k is the time taken for N to
increase by a factor of a.

e If k=1, then a is the growth factor.

e If k is positive, then with a > 1 the function models
exponential growth, and with 0 <a <1 the function models
exponential decay.

When modelling exponential decay, there may be a background
level, so that N approaches some non-zero value c as ¢

increases. For example, the temperature of a hot drink decays
exponentially and approaches room temperature. This means
that the asymptote is not necessarily N = 0. We can change the
asymptote to N = ¢ by adding on a constant to get

INOT TOr prinfing NG o

O
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N = Ba(E) +c

In this case, B represents how much N starts above the
background level, so the initial value is B+c.

KEY POINT 2.11

t

For N = Ba(z) +c:
e the background level is ¢ (i.e. the asymptote is N = ¢)
e the initial value is B+c

o k is the time taken for the difference between N and
the background level to increase by a factor of a

e if a>1 the function models exponential growth

e if 0 <a<1 the function models exponential decay.

EXAM HINT

= Once you have plotted a graph on your calculator, you

can use itto find x and y values, as well as check the
value of the asymptote.

See Calculator Skills sheet 4 on the CD-ROM for how to
analyse graphs.

Remember to round calculator answers to 3 significant
figures, unless asked to do otherwise.

(a) What was the initial temperature of the liquid?
(b) Find the temperature of the liquid after 2 minutes.
(c) How long does it take for the liquid to cool to 26°C?

@
The word ‘initial’ means when®
t=0.

(a) When t =0,

T=24+72=906°C

EXAM HINT
ExAT ——

Your calculator
Osympto*esl as
they are not red ¥
part of the graph;
ou can O“\Y\g‘“”sS
wphere *heY\Ore Y
looking at 1arge .
values of x. This is

(d) What temperature does the model predict the liquid will eventually reach?

LS —
= YNy

© Cambridge University Press 2012
~ Not for printing sharing or distribu:
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Worked example 2.4
e

The temperature T, in degrees Celsius, of a cooling liquid is modelled by the equation
T =24+72%0.6%, where t is the time in minutes after the cooling begins.

b

i
i




N
continued . . .
When the answer is not exact, ¢ (b) When t=2,
we should round it to 3 significant T 24 £ 72 % 0.6
fi : ‘
gures = 27.4°C (3 SF)
()
We can answer this by looking at*® (c) T

the graph on a calculator.

26

t
2.34

From GDC: t =234 (3 SF)
It will take 2.24 minutes.

In the long term, the temperature * (d) 24°C

PUTeN P ana povey
E_\M-F e N T e VY

approaches the asymptote.
pp y p W a W-ﬁ‘&‘_\‘__““_"\,f“mu

\ ' v

In many applications, we first need to find the constants in the
model using the information given.

Worked example 2.5

A population of bacteria in a culture medium doubles in size every 15 minutes. At 08:00 there
are 1000 bacterial cells. Let N be the number of bacterial cells ¢ hours after 08:00.

(a) Write down a model for N in terms of ¢.
(b) How many cells are there at

(i) 08:15?

(i) 09:24?

()
. There is a constant foctor.of° () N= Ba(a
increase, so we use an exponential

growth model Let N be the number of cells at time t hours

“““-\‘...__ P e T
2

after 0&:00.
Every time tincreases by 0.25 # Doubles every quarter hour =
hours, N doubles. a=2,k=0.25
S N=Bx24

_6 él'ppic 1 HMgel?_rd, qnd Topic 2: Functions and_ ?%'_JGH?QS ‘_ a Uvseity.Pt_ess.O!.]
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continued . . . '
\
Initial value gives B.** (b) When t=0.N=1000=5, ¢ 4
N =1000 x 24* }
® {
Remember to convert minutes to ® () When t=0.25, N=1000x2=2000 cells. 1
hours. (i) When t=14, N=1000x25¢ = 48503 cene.xj
\§ e AP g PN ) J 2 |

When modelling exponential growth or decay, you may be We will meet similar
given a percentage increase or decrease. This needs to be Lestions deain
converted into a growth factor to be used in the exponential ]> ?vhen we sfu dy ]>

model. . ..
geometric series in

chapter 6.

Worked example 2.6 3

A car that cost $17 500 initially loses value at a rate of 18% each year.
(a) Write a model for the value (V) of the car after n years in the form V = ka".

(b) Hence or otherwise find the value of the car after 20 years.

\
1

D 18 L
Find the growth factor. (a) The growth factor is 1—10—0 =082 !
]
Use initial value information. ® When n=0, V =k=17500, hence
V =17500 X 0.862" f
Substitute for n.* (b) After 20 years, V = 17500 x0.82% = $330.61 |
\_ O T e SHUPRIUNID S e )

EXAM HINT

‘Hence or otherwise’ means that you can use any method

you like, but the word ‘hence’ suggests that the answers
from previous parts of the question might be helpful.

J
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the same set of axes, for —=5<x <5 and 0< y <10. Show all
the axis intercepts and state the equation of the horizontal

asymptote.

(@ (i) y=15 (i) y=3"

(b) (i) y=2x3* (i) y=6x14*
S (1) Lo (2)

(c) (@) y—(z) (i) y (3)

(d) (i) y=5+2* (i) y=8+3

(e () y=6-2 (i) y=1-5*

An algal population on the surface of a pond grows by
10% every day. The area it covers can be modelled by the
equation y =k x1.1', where ¢ is measured in days, starting
from 09:00 on Tuesday, when the algae covered 10 m*. What
area will it cover by 09:00 on Friday? [4 marks]

A tree branch is observed to bend as the fruit growing on
it increase in size. By estimating the mass of the developing
fruit and plotting the data over time, a student finds that the
height / in metres of the branch end above the ground is
closely approximated by the function

h=2-0.2x1.6""
where m is the estimated mass, in kilograms, of fruit on the
branch.
: (a) Sketch the graph of h against m.
(b) What height above ground is the branch without fruit?

(c) The total mass of fruit on the branch at harvest was
7.5kg. Find the height of the branch immediately prior
to harvest.

" o

(d) The student wishes to estimate what mass of fruit would
cause the branch end to touch the ground. Why might
his model not be suitable to assess this? [10 marks]

(a) Sketch the graph of y =1+16"*". Label clearly the
horizontal asymptote and the maximum value.

(b) Find all values of x for which y=3. [6 marks]

11 A bowl of soup is served at a temperature of 55°C, in a
room with air temperature 20°C. Every 5 minutes, the

Y
4

o
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temperature difference between the soup and the room air
decreases by 30%. Assuming that the room air temperature
remains constant, at what temperature will the soup be

7 minutes after serving? [7 marks]

% a The speed V (in metres per second) of a parachutist ¢
seconds after jumping from an aeroplane is modelled by the
equation

V =40(1-3701)

(a) Find the parachutist’s initial speed.

(b) What speed does the model predict that the parachutist
will approach eventually? [6 marks]

The air temperature T (in degrees Celsius) around a light
bulb is given by the equation

T=A+Bx2 k

where x is the distance in millimetres from the surface of the light
bulb. The background temperature in the room is a constant 25°C,
and the temperature on the surface of the light bulb is 125°C.

(a) Suppose that the air temperature 3 mm from the surface
of the bulb is 75°C. Find the values of A,B and k.

(b) Determine the air temperature 2 cm from the surface of

the bulb.
(c) Sketch a graph of air temperature against distance from
the surface of the bulb. [10 marks]

The number e

In this section we introduce a special mathematical constant,
e, which will be used extensively in the rest of this chapter and
throughout the course.

Consider the following three situations, which might describe early
population growth of a cell culture, for example.

There is a 100% increase every 100 seconds.
There is a 50% increase every 50 seconds.

There is a 25% increase every 25 seconds.

A— L C;ambri.dg.e University Press 2012.
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At first glance these may appear to be equivalent statements, but
they are subtly different because of the compounding nature of
percentage increases. If we begin with a population of size P,
then after 100 seconds the population becomes, in the three

cases,

Px(1+1)=2P

1\
Px(1+5) =2.25P

1 4
PX(H_Z) =2.44P

S . . 100 )
Generalising, if we consider an increase of — % which occurs
n

n times in the course of 100 seconds, the population after 100

1 n
seconds would be given by P x (1 + —).

n
From the above it may seem that as # increases, the overall
increase in population over 100 seconds will keep getting
larger. This is indeed the case, but not without limit. By taking
larger and larger values of n, it can be seen that the population

1 n
increase factor (1 + —] tends towards a value of approximately
n

2.71828182849. This number, much like m, arises so often in
mathematics and is so useful in applications that it has been
given its own letter, e.

KEY POINT 2.12

€=12.71828182849...

The numbers © and e have many similar properties. Both are irrational, meaning that they
cannot be written as a fraction of two whole numbers. They are also both transcendental, @
which means that they cannot be the solution to any polynomial equation (an equation

involving only powers of x). The proofs of these facts are intricate but beautiful.

50

In chapter 12 you
will see that e plays
]>a major  role in]>
studying rates of

change.

EXAM HINT

In questions involving the number e, you may be asked
either to give an exact answer (for example, in the form

of €?) or to use your calculator, in which case you should
round the answer to 3 significant figures unless told
otherwise.

Topic 1: Algebra, and Topic 2: Fqu:tionstqnd eﬂuutiogs © Cambridge University Press 2012.
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Although e has many important properties, it is after all just
a number. Therefore, the standard rules of arithmetic and

exponents still apply.

. Exercise 2C

1. Find the values of the following to 3 significant figures.

(@) (i) e+1 (i) e—4
(b) (i) 3e (ii) §
© @) e (i) e
(d) (i) 5e%° (ii) e%

Evaluate {/(7* +7°). What do you notice about the result?

2 2
Expand (ez +—) .
e2

[4 marks]

Introduction to logarithms

In this section we shall look at an operation which reverses the
effect of exponentiating (raising to a power) and allows us to
find an unknown power. If you are asked to solve

x*=3forx=20

then you can can either find a decimal approximation (for
example by using a calculator or trial and improvement) or use
the square root symbol to write

x=13

This statement just says that ‘x is the positive value which when
squared gives 3’

Similarly, to solve
10* =50

we could use trial and improvement to seek a decimal value:
10' =10
10?7 =100

© C}:lmbri.cig.e University Press 2(_)] 2_h i

a or d on

logarithms for yourself.

See the Supplementary
@ sheet 2 ‘Logarithmic scales

and log-log graphs’ on the

CD-ROM if you are
interested in discovering

51




The symbol < means
that if the left-hand Y

side is true then so

is the right-hand

side, and if the right-hand
side is true then so is the
lef-hand side. When it
appears between two
statements, it means that the
statements are equivalent
and you can switch
between them.

EXAM HINT )
and In x have
\;noau)\(‘ton on groghmo
calculators (1og
and ‘In’) that you
can use 1o evaluate.
|t the base is not
or e however, YOU
will have to use the
principles of Key
point\}.\f.gg
e change-
\:f(-ab*cse rule in Key

point 2.22.

So x must be between 1 and 2:

10° =31.6
106 =39.8
107 =50.1

So the answer is around 1.7.

Just as we can use the square root to answer the question ‘what is
the number which when squared gives this value?’, there is also

a function that can be used to answer the question ‘what is the
number which when put as the exponent of 10 gives this value?’
This function is called a base-10 logarithm, written log,,.

In the above example, we can write the solution as x =log,, 50.
More generally, the equation y =10* can be re-expressed as

x =log,, y. In fact, the base need not be 10, but could be any
positive value other than 1.

KEY POINT 2.13

b=a"< x=log,b

It is worth noting that the two most common bases have
abbreviations for their logarithms. Since we use a decimal
system of counting, 10 is the default base for a logarithm, so
log,, x is usually written simply as logx and is called the
‘common logarithm’ Also, the number e that we met in section
2C is considered the ‘natural’ base, so the base-e logarithm is
called the ‘natural logarithm’ and is denoted by Inx.

KEY POINT 2.14

log,, x is often written as log x

log. x is often written as Inx

Since taking a logarithm reverses the process of exponentiating,
we have the following facts:

KEY POINT 2.15

log,(a*)=x

alosax = x

Topic 1: Algebra, and Topic 2: Fungctions‘qnd equutic_)ps
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These are referred to as the cancellation principles. This

sort of ‘cancellation, similar to stating that (for positive x)
Yrr =x= ((/; )n, is often useful when simplifying logarithm
expressions; but remember that you can only do such
cancellations when the base of the logarithm and the base of
the exponential match and are immediately adjacent in the
expression.

The cancellation principles can be combined with the rules of A related change-

exponents to derive an interesting relationship between the of-base rule for
base-e exponential function and any other exponential function. ]> logarithms is given ]>
From the second cancellation principle it follows that e'® =a. in Key point 2.22

By raising both sides to the power x and using the rule of
exponents (b”)" =b” (Key point 2.5), we obtain the following

useful formula.
When  we  study

rates of change in

KEY POINT 2.16 j
]>chapter 12, we wzll]>

need to use base
exlna =g* i

e for exponential

functions.

This says that we can always change the base of an exponential
function to e.

Worked example 2.7

Evaluate

(a) logs625 (b) logs16

is not a power of the base 8, but
both 8 and 16 are powers of 2.

)
1
Express the argument of the 2 (2) logs 625 =log; 5* 3
logarithm in exponent form with the ]
same base. J
{
()
Apply the cancellation principle ® =4 1
log,(@*) = x. 3
d
The argument of the logarithm, 16, ¢ (b) log, (16)=log, (2*) \',I
]
J
[
{
—

© C,‘ambri.c_lg_e University Press 2012.
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continued . .. ‘
@

Using a rule of exponents, convert® = 2%
=109g
24 to an exponent of 8=2°

Apply the cancellation principle ® 4
Xy = 2
loga(a ) X Y Y W e NPV VNP | JI-AWJ

Whenever you raise a positive number to a power, whether
positive or negative, the result is always positive. Therefore a
question such as ‘to what power do you raise 10 to get =32’ has
no answer.

KEY POINT 2.17

You cannot take the logarithm of a negative number or
zero.

. Exercise 2D

1. Evaluate the following:

(a) (i) log;27 (ii) log,16
(b) (i) logs5 (ii) log,3

(c) (i) logull (ii) loglsll
(d) (1) log3§ (ii) log4a
(e) (i) log,2 (ii) logy,3
) () log,/8 (ii) log,2
(g) (1) logs4 (ii) logg 27
(h) (i) log,;125 (ii) log,32
(i) (i) log,2v2 (i) log, 8133
(G) (1) log,;0.2 (ii) log,0.5

2. Use a calculator to evaluate each of the following, giving
your answer correct to 3 significant figures.

(@) (i) log 50 (if) log(i)
(b) (i) Ino0.1 (i) In 10

4 Topic 1ifxlgerq, Topig._Z: Functions and u_oti s © Cambridge Umiversi.;Pres : DL ettt
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3. Simplify the following expressions:

(a) (1) 7logx—2logx (ii) 2logx+3logx
(b) () (logx—1)(logy+3) (i) (logx+2)
loga)’ -1

© @ loga+logb (ii) (loga)

logalogh loga—1
4. Make x the subject of the following:

(a) (i) logsx=y (ii) log,x=2y

(b) (i) log,x=1+y (ii) log,x = y?

(o) (i) log,3y=3 (ii) log, y=2

5. Find the value of x in each of the following:

(a) (i) log,x=32 (ii) log,x=4
(b) (i) logs25=>5x (ii) log,7=2x
() (i) log,36=2 (ii) log,10= %
% a Solve the equation log,,(9x +1) = 3. [4 marks]
Solve the equation logyv1—x = % [4 marks]
a Find the exact solution to the equation In(3x—1)=2.

[5 marks]

3‘%\ g Find all values of x which satisfy (log, x)2 =4. [5marks]

Solve the equation 3(1+logx)=6+logx. [5 marks]
Solve the equation log,4=9. [4 marks]

i}% Solve the simultaneous equations
log, x+log; y=6

log, x —log, y =2 [6 marks]

The Richter scale is a way of measuring the strength
of earthquakes. An increase of one unit on the Richter
scale corresponds to an increase by a factor of 10 in the
strength of the earthquake. What would be the Richter
level of an earthquake which is twice as strong as a
level 5.2 earthquake? [5 marks]

See Prior Learning
section O on the

CD-ROM if you
< if you<<]

need to brush up

on simplifying
fractions.

B
Remember that 'log
X is just another

be
value so can
treated the same way

iable.
qs any variab

“

N O O Drin Na or d
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Laws of logarithms

Just as there are rules to follow when performing arithmetic
with exponents, so there are corresponding rules which apply to
logarithms.

See Fill-in proof 12 ‘Differentiating logarithmic functions
graphically’ on the CD-ROM for how these rules for logarithms
can be derived from the laws of exponents.

KEY POINT 2.18

The logarithm of a product is the sum of the logarithms.

log, xy =log, x+1log, ﬁ

For example, you can check that log, 32 = log, 8 +log, 4.

KEY POINT 2.19

The logarithm of a quotient is the difference of the
logarithms.

loga i = logu X = logu Y

For example, log6 =1log42 —log?7.

KEY POINT 2.20

The logarithm of an exponent is the multiple of the
logarithm.

log, x" =rlog, x ﬁ

For example, log; 8 =log;(2%)=3log; 2.

A special case of this is the logarithm of a reciprocal:
logx™ = —log x

56  Topic 1: Algebra, and Topic 2: Functions and equations  © Cambridge University Press 2012.
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We know that a° = 1 irrespective of a. We can express this in
terms of logarithms:

EXAM HINT
A —

It is just @s important
1o know what you
cannot do with
\ogori’rhms.'One very
common mistake is

KEY POINT 2.21

The logarithm of 1 is always 0, irrespective of the base.
loga 1=0

to rewrite log(x + y)

as logx +logy or @

logx x logy-

We can use the laws of logarithms to manipulate expressions

and solve equations involving logarithms, as the next two
examples illustrate.

Worked example 2.8

2
If x=1log,,a and y=Ilog,, b, express log,, % in terms of x, y and integers.

100a?

@
Use laws of logs to isolate ® logio Pa logo (100a*) —logy; b

log,pa and log,,b in the given
expression. First, use the law about
the logarithm of a fraction.

Then use the law about the log of a o

=10g,, 100 +log,, a? —log,, b
product.

@
For the second term use the law*®

=log,, 100+ 2log,, a —log, b
about the log of an exponent.

et e moves et ™ T s+ s pm

Finally, simplify (by evaluating) o

=2+2log,a—logg b
log;,100. =2+2x-y
e S NPV f‘h_!_‘\r“‘»»u-ﬁ‘“_ﬂp Wa /“"h-u-_k___‘»_
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( Worked example 2.9

Solve the equation log, x +log, (x +4)=5.
| - , L;
Rewrite the left-hand side as a log, x +log, {x +4)=5 ;
single logarithm. & log,(x(x+4))=5 J
@ 4
Undo the logarithm by * 2109, (x(x+4)) _ o5 3
exponentiating both sides; the base
must be the same as the base of the
logarithm, 2. |
- N J
Apply the cancellation principle to x(x+4)=32 g
the left-hand side. X2 4 4x =32 \
i
o I
This is a quadratic equation, which * x2+4x-32=0
N can be factorised. (x+8)(x-4)=0 )
3 x=-8&orx=4 |
A \
A o
Check the validity of the solutions © When x=-8:
by putting them into the original LHS = log,(=8) +10g,(~4), and since we cannot take
equation. logarithms of negative numbers, this solution does |
not work. }
_ When x=4: §
i LHS = log, 4 +log, & $
1 =21+8=8=RME
4 S0 x =4 is the only solution of the given equation.
y R L Py f‘x,_‘f‘«“‘"-*‘—;l‘ . £ R
;
\_ .
1 |I
EXAM HINT
Checking your answers is an important part of solving
mathematical problems, and involves more than looking for
- arithmetic errors. As this example shows, false solutions may
arise through correct algebraic manipulations.
o
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Although we have discussed logarithms with a general base

a, your calculator may only have buttons for the common
logarithm and the natural logarithm (log x and Inx). To use a
calculator to evaluate a logarithm with base other than 10 or e
(for example, log; 20), we use the following change-of-base rule
for logarithms.

KEY POINT 2.22

Change-of-base rule for logarithms:

log, x

log, a ﬁ

So, we can calculate log; 20 using the logarithm with base 10 as
follows:

log, x =

log 20
logs 20 = ———=1.86 (3 SF)
log 5

The change-of-base rule is useful for more than just evaluating
logarithms.

Worked example 2.10

Solve the equation log, x +log, x = 2.
@
We want to have logarithms * logs x X[
. o logg x = —2— {
involving just one base, so use the logs 9 {
change-of-base rule to turn the log 108, X \
with base 9 info a log with base 3. = 75 i
Therefore the equation is j
[
logs x + 2222 = 2 {
3
()
° 5
Collect the logs together. o 2logyx=2 ]
2
& logsx= = j
Exponentiate both sides with ** Hence 4 f
o X=33 =433 (35F) \
K P RSP f—”—‘-ﬁ"ﬁﬁ—\*.ﬁ__,_" Jf‘“m-_____»-‘J J
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f . Exercise 2E

% 1. Given that b> 0, simplify each of the following.
(@) (i) log,b* (ii) log,~b
(b) (4) logﬁ b3 (ii) log, b* —logb2 b

% 2. If x=loga, y=logband z=logc, express the following in
terms of x,y and z.

(a) (i) log(bc) (i) 1og(2)
(b) (i) loga® (ii) logb®
(o) (i) logcb’ (ii) loga®b
2 2
@ () 1og(ﬂ) (i) log(a—)
c bc?
© () 1og(2l?) (ii) log(5b)+log(2c2)
¢
% 3. Solve the following equations for x.
(@) (i) log, @ * x) =3 (i) log,(7x+4)=5
—Xx
() () log,x—log,(x—6)=1 (i) logsx—2log, G) -1
(o) (i) log,x+1=log,x (ii)) loggx+log,x=4
(d) (i) log,x+logsx=2 (ii)) log,sx—logs, x=0.5

(e) (i) logs(x—7)+logs(x+1)=2
(i) 2log(x—2)—log(x)=0

() (i) log(x>+1)=1+2log(x)
(ii) log(3x+6)=log(3)+1

Find the exact solution to the equation 2Inx+1n9 =3,
giving your answer in the form Ae® where A and B are
rational numbers. [5 marks]

% If a=In2 and b=In5, write the following in terms of a

and b.

(a) In50

(b) Ino0.16 [6 marks]
a Solve log, x =1log, 2. [5 marks]
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If x=loga, y=1logb and z=logc, express the following
in terms of x, y and z.
(a) loga’ —2log ab?
(b) log(4b)+ 2log (5ac) [8 marks]
1 2 3 4 8 9
) Evaluate log—+log—+log—+log—+---+log—+log—.
@ e valuate log—+log—+log~ +log~ og+log—
[4 marks]
g If x=Iloga, y=1logb and z =logc, express the following
in terms of x, y and z.
(a) log,a%
(b) log,, ac? [6 marks]
If x=1loga, y=logb and z =logc, express the following
in terms of x, y and z.
a
1 £
(a) log, ( bc)
(b) log ,(b) [7 marks]
Graphs of logarithms
Let us now look at the graph of the logarithm function and the
various properties of logarithms that we can deduce from it. In chapter 5 you
Here are the graphs of y=logx,y=1log,x and y =Inx. will see how this
type of change in
i ]> the function causes ]>
a vertical stretch of
the graph.

5
4 4
34
24
14

—4
-5

Given the change-of-base rule from section E (Key point 2.22),

it is not surprising that these curves all have a similar shape:

logx logx
oge

and Inx =

since log, x = , each of the logarithm
functions is a multiple of the common logarithm function.
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From the graphs above, we can observe the following important
properties of the logarithm function.

EXAM HINT
A —

Vertical asym
are even haraer to
detect accurately
from a calculator
display than ‘
horizontal ones- "U;\s
it i entl
is why it is €sS
that you know ?Nhere
the asymptofe 15 for
a logarithmic grapt:

p*otes
KEY POINT 2.23

If y=1log,x (forany positive value of a), then

e the graph of y against x crosses the x -axis at (1, 0),
because log,1=0

e logx is negative for 0 < x <1 and positive for x >1

e the graph lies entirely to the right of the y -axis, since
the logarithm of a negative value of x is not a real
number

e the graph increases (slopes upward from left to right)

throughout, and as x tends to infinity so does y
Note that a

logarithm graph is

. the reflection of an

. I> exponential graph. ]>
2 You will see why this

A is in chapter 5.

. Exercise 2F

e the y-axis is an asymptote to the curve.

It is unlikely you will find exam questions testing just this topic,
but you may have to sketch a graph involving a logarithm as
part of another question.

[a—

x\
<A
o

G

. Sketch the following graphs, labelling clearly the vertical
asymptote and all axis intercepts.

() (i) y=log(x?) (i) y=log(x?)
.E' (b) (i) y=log4x (ii)) y=log2x

i (©) (i) y=log(x-2) (i) y=log(x+1)
3

Solving exponential equations

One of the main uses of logarithms is to solve equations that
have the unknown in an exponent. By taking logarithms, the
unknown becomes a factor, which is easier to deal with.

EXAM HINT
-z When taking logarithms of both sides of an equation, you

can use any base. We usually choose log or In so that we
can easily find or check the answer with a calculator.
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Worked example 2.11 "2

Find the exact solution of the equation 372 =5. .=

|
Take logs of both sides. a log(3**) = log5 }
4 {
. L) ‘
The log of an exponent is the & (x-2)log3=log5 \
multiple of the log (Key point {
2.20). ]
|
Sx-2= log> }
logd
{
‘n
\
S x= log> +2 i
logd J
ode o aa J.N—-ﬁr\ﬁwhw_’ff‘amu
NG W,

Note that we can use the rules of logarithms to make the answer
more compact:

log5  _log5+2log3 _ log(5%3%) log45
log3 log3 log3 log3
You need to be able to carry out this sort of simplification, but

you do not have to do it unless the question explicitly asks you
to — for instance, if the above example specified that you should

loga

write the answer in the form where a and b are integers.

logb
If you are allowed to use a calculator, you can plot both sides of

the equation and find the solution by looking for intersections
of the graphs.

EXAM HINT

See Calculator skills sheet 5 on the CD-ROM for how to use
graphs to solve equations.
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( Worked example 2.12

n -

s

The number of bacteria in a culture medium is given by N = 1000 x 2%, where ¢ is the number
of hours since 08:00. At what time will the population first reach one million?

. N i

We need to solve the equation 10 i 1
1000 x 24 =1000000. <
First, sketch the graph of y
N=1000x24 with t on the j

x-axis and N on the y-axis. s

{

N =10% x 2t \

4
t i
- . . S f
The solution is the intersection of the From GDC: £ =249 (hours after 08:00) ,f
curve with the line y =1000000. f‘
» !

.. H “

Convert this tvalue into hours and 049 x 60 = 29 minutes \
minutes. So the population will reach 1 million at 10:29. 4
e Py f“‘-,_‘rn‘_—*"""“-" Jr ‘‘‘‘‘‘ “‘-"W‘JI

\_ _/

The next example shows how to solve a more complicated
exponential equation, where the unknown appears in the
exponent on both sides. The method of taking logarithms
of both sides works here as well, but a little more algebraic
manipulation is needed.

There is another type of exponential equation that sometimes comes up: a disguised
]>quadmtic equation, for example 2** —5X2*+6=0. Such equations are explored in]>
section 3B.

Worked example 2.13

Solve the equation 10* = 5x 2%, giving your answer in terms of natural logarithms.

Take the natural logarithm of both ¢
sides.

In(10%) =In(5 % 25%)

On the RHS, the log of a product is ¢
the sum of logs.

< 1n(10%)=In 5+In(22%)

i
1
i
4
L
4
{
«
—>

~ © Cambridge University Press 2012.
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continued . .. 1
@
The log of an exponent is the ® & xIn10=In 5+ 3xIn2 J
multiple of the log. J
S ]
Collect all terms containing x. * & xIn10 - 3xIn2=In5 J
L8 4
We want only one term with x, & x(In10 - 3In2) =In5 y
so take x out as a factor. ns \
X=——
In10 —3In2 J
\ Sede e AT J’“““Mqu J

. Exercise 2G

1. Solve for x, giving your answer correct to 3 significant figures.

(a) (i) 3x4*=90 (i) 1000x1.02* =10000
(b) (i) 6x7%1=1.2 (i) 5x225 =94
(o (1) 3»=4 (i) 5 =6+

(d) (i) 3x2¥*=7x3%2 (i) 4x81=3x5>+

EXAM HINT

In question 1 above, where you are allowed to use a
calculator, you need to judge whether it will be faster to plot
graphs or to rearrange the equation and then evaluate the
logarithms with your calculator, for example:

2x1=5
=(x-1l)log 2=log 5

log 5

=3.32 (3SF
log 2 (35F)

2. Solve the following equations, giving your answers in terms
of natural logarithms.

(@) i) 3*»=5 (i) 103*=7
(b) (i) 2+ =5* (i) 52 =3*
(c) (1) 2% =3e* (i) e* =5x2*

ra—) © Cambri.dg-e University Press 2012. F7 R V7 (VX Z_Expo‘li[ents qrd |o.g_qrithrr_15 65
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In a yeast culture, cell numbers are given by N =100e"*,
where ¢ is measured in hours after the cells are introduced
to the culture.

(a) What is the initial number of cells?
(b) How many cells will be present after 6 hours?

(c) How long will it take for the population to reach
one thousand cells? [4 marks]

A rumour spreads exponentially through a school, so that
the number of people who know it can be modelled by the
equation N = Ae", where ¢ is the time, in minutes, after 9
a.m. When school begins (at 9 a.m.), 18 people know the
rumour. By 10 a.m. 42 people know it.

(a) Write down the value of A .
(b) Show that k=0.0141, correct to three significant figures.
(c) How many people know the rumour at 10:30 a.m.?

(d) There are 1200 people in the school. According to the
exponential model, at what time will everyone know
the rumour? [6 marks]

The mass M of a piece of plutonium at time ¢ seconds is
given by
M = ke-001
(a) Write down the initial mass of the plutonium.
(b) Sketch the graph of M against t.
(c) How long will it take for the plutonium to reach
25% of its original mass? Give your answer in minutes.
[5 marks]
a Find the solution to the equation 15** =3 x5! in the form
loga
4 logb

1
Solve the equation, = 3% 49>, giving your answer in

-y
-

where a and b are positive integers. [6 marks]

the form a+log, b where a,beZ. [6 marks]

1
a Solve the equation 5x4*! = —, giving your answer in the
32x
Inp
Ing
g (a) Show that the equation 3* =3 —x has only one solution.

1| (b) Find the solution, giving your answer to 3 significant
figures. [6 marks]

g form x = where p and g are rational numbers. [6 marks]

Y
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Summary

e In this chapter, we revisited the rules for exponents and explored the meaning of fractional and
negative exponents. (These rules are not in the Formula booklet.)

a"xa' = am+n (am)n — am><n
am+at=qgm" a;:(%)m:nam
a” xb" =(ab)" a’°=1 (a#0)
! 1
a”+b”:(g) a"=— (a#0)
b a"

e Exponential functions can be used to model growth or decay of some simple real-life systems,
t

taking as a general form the function: N = Ba(iJ +c

log, b represents the answer to the question ‘to what exponent do I have to raise a to get b ?’

b=a*< x=log,b

Logarithms undo the effect of exponentiating, and vice versa:

log, (a*)=x=aqaosa*

The following properties of the logarithm function can be deduced from its graph, if y = log x
then:

— the graph of y against x crosses the x-axis at (1,0)

- log x is negative for 0 < x < 1 and positive for x > 1

— the graph lies to the right of the y-axis; the y-axis is an asymptote to the curve

— the logarithm graph increases throughout; as x tends to infinity so does y.

Logarithms obey a number of rules, most of which are given in the Formula booklet:

log, xy =log, x +1log, y
log, (EJZ log, x—log, y
y

log, (l) = —log, x (not in Formula booklet)
x

log, x* = plog, x
log,1=0 (not in Formula booklet)

e ¢ is the mathematical constant (Euler's number): e = 2.71828182849...

o Logarithms with base 10 (common logarithms, log,, x), are often written simply as log x.
Logarithms with base e (natural logarithms) are usually written as Inx.

Not tor p
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¢ A change-of-base formula for logarithms, and a related rule for exponents, are given in the
formula book:

log, a = log.a
log. b
a* = exlna

e Many exponential equations can be solved by taking logarithms of both sides.

Introductory problem revisited

i A radioactive substance has a half-life of 72 years (this is the time it takes for half of the
mass, and hence radioactivity, to decay). A 1kg block of the substance is found to have
a radioactivity of 25 million becquerels (Bq). How long, to the nearest 10 years, would
it take for the radioactivity to fall to 10000 Bq?

Write down the exponential * Let R be the radioactivity after t years. Then
equation. B
R=Bak

Initial condition gives B. When t=0, R=25x10° =B

Every time t increases by 72, R falls a=05, k=72
by 50%. t
R = (25 X10°)x0.57

We want to find the value of t for
which R=10000.

R=10*
£
& 25%x10° X057 =10*

t
& 057 =0.0004

t
The unknown is in the exponent, so*® Iog(0.572)= log(0.0004)
use logarithms.

t
—~10g(05) =l0(0.0004)

. ..
Now rearrange to find . 72 10g(0.0004) 127
~ log(0s) 7

010000 Bq,
W’_A,__/—_p —

/ PN

Y -

It takes around &10 years for the radioactivity to fall
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Mixed examination practice 2

Short questions

% Solve log; (\/x2 + 49) =2. [4 marks]

If a=logx, b=logy and c=logz (where all logs are with base 10),
express the following in terms of 4, b and c.

2
(a) log> Jr (b) log0.1x (© logy (Z) [6 marks]
z z
t
Given that B=4+12e3, find the value of t for which B=25. [3 marks]

Find the exact solution of the equation 4 x 3?* = 5%, giving your answer in
terms of natural logarithms. [6 marks]

Solve the simultaneous equations

Inx+Iny*=38
Inx*+Iny=6 [6 marks]
A @ 1f y=lnx—In(x+2)+In(4—-x?), express x in terms of y. [6 marks]

Find the exact value of x which satisfies the equation

2% 372 =361
giving your answer in the simplified form lln_p where p,qe Z. [5 marks]
nq

e Given that log, b* = ¢ and log,a=c—1 for some value ¢, where 0<a<b,
express a in terms of b. [6 marks]

a Find the exact solutions of the equation Inx =4log_ e. [5 marks]

Long questions

1. The speed V in metres per second of a parachutist ¢ seconds after
jumping is modelled by the expression

V = 42(1 - e02)

Sketch a graph of V against t.
What is the initial speed?
What is the maximum speed that the parachutist could approach?

© Cambridge University Press 2012. 2 Exponents and logarithms 69
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The parachutist opens the parachute when his speed reaches 22 ms™".

How long is he falling before opening the parachute? [9 marks]

! 2. Scientists think that the global population of tigers is falling exponentially.
5 Estimates suggest that in 1970 there were 37000 tigers but by 1980 the
number had dropped to 22 000.

The number T of tigers n years after 1970 can be modelled by T = ka".
(i) Write down the value of k.
(ii) Show that a =0.949 to three significant figures.

What does the model predict that the population will be in 2020?

( When the population reaches 1000, the tiger population will be
' described as ‘near extinction’ In which year will this happen?

In the year 2000 a worldwide ban on the sale of tiger products was
implemented, and it is believed that by 2010 the population of tigers
had recovered to 10 000.

If the recovery has been exponential, find a model of the form T = ka™
connecting the number of tigers (T) with the number of years after

2000 (m).
' If each year since 2000 the rate of growth has been the same, find the
percentage increase in the tiger population each year. [12 marks]

3. A sum of $2000 is paid into a bank account which pays 3.5% annual
interest. Assume that no money is taken out of the account.

What is the amount of money in the account after
(i) 1year?
(ii) 5 years?

How long, to the nearest year, does it take for the amount of money in
the account to double?

Sketch a graph showing how the amount of money in the account
varies with time over the first 20 years.

() Another bank account pays only 2% annual interest, but the initial
investment is $3000. After how many years, to the nearest year, will the
amount of money in the two accounts be the same?

How much should be invested in the second account so that after
20 years the amount of money in the two accounts is the same? [14 marks]

!"J.
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Algebraic
structures

Introductory problem

1
Solve the equation — =Inx.
x

Equations are the building blocks of mathematics. There are
many different types: some have no solutions; some have many
solutions; some have solutions which cannot be expressed in
terms of any function you have met.

Graphs are an alternative way of expressing a relationship
between two variables. If you understand the connection
between graphs and equations, and can switch readily between
the two representations, you will have a wider variety of

tools for solving mathematical problems. The International
Baccalaureate® places great emphasis on using graphical
calculators to analyse graphs.

Identities are used to rewrite an expression in a different form,
which can be very useful when solving equations. In much of
mathematics we do not distinguish between equations and
identities, although they are fundamentally different. In this
chapter we shall explore some of these differences and look

at the different techniques we can apply to equations and
identities.

Very few examination questions are set on this topic alone, but
the techniques of this chapter are involved in virtually every
examination question.

© Cambridge University Press 2012.
~ Not for printing, sharing or distribution.

In this chapter you
will learn:

* some standard
algebraic strategies for
solving equations

* how tfo sketch graphs,
and some limitations of
graphical calculators

* how to use a graphical
calculator to solve
equations

® how to work with
identities.
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This is true for real |
numbers, but if the Y

numbers you are

looking for are infegers, then

knowing that they multiply
together to give a non-zero

constant is extremely useful.

For example, can you solve
xy =14 if xand y are
known to be integers2 This
type of equation is called a
Diophantine equation.

iy Worked example 3.1

7 Solve the equation e* (In(x)—1)(2x—1)=0.

If a product is equal to zero, then * Either " =0 0 }
] one of the factors must be zero. or In(x)—1=0 @)
- o 2x-1=0 )

Solving equations by factorising

We start by looking at some common algebraic methods for
solving equations. You have already seen how factorising can
be used to help sketch the graphs of quadratic functions; in this
chapter we will apply the same principles in a wider context.

If two numbers multiply together to give 5, what can you say
about those two numbers? They could be 1 and 5, 10

1 5
and 5 , Tand ; , .... In fact, there are an infinite number

of possibilities. So, just knowing that two numbers multiply
together to give 5 is not of much help in determining what the
numbers actually are.

However, if you know that two (or more) numbers multiply
together to give zero, then you can deduce that at least one of
those numbers must be zero. Therefore, if we can factorise the
expression we would have a powerful tool for solving equations
that take the form of an expression equal to zero.

KEY POINT 3.1

For factorising to be useful in solving an equation, one side
of the equation must be zero.

From (1): €* =0 has no solution
From (2): In(x) =1

4

¢

L

Sx=e¢ {i

From (3): 2x=1

: #

Sx=— w

2 |

!

|

1 |

LX=eor— {

2 |

Y /.‘— r_-,r‘.__iu“_,'*‘__,jf"“».pr e
.
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If, instead of factorising an expression, you divide it by another
expression, it is possible that you will lose solutions. For
example, consider the equation x* = x. If you divide both sides
by x, you get x* =1 and hence x = *1. But, by substituting

x = 0 into the original equation, you can see that it is also a

solution, which was missed by the method of dividing through
by x. The correct way to solve this equation is:

EXAM HINT
ExAT ——

Whenever you aré
tempted o divide
both sides by an
expression involving

«, rearrange the

. sO "hOt one
=x equation d then
side is zero an
x*—x=0 factorise the other
side.
x(x2 - 1) =0

x(x-1)(x+1)=0

x=0or x=1or x=-1

. Exercise 3A

% 1. Solve the following equations.
() (i) 3(x-3)'=0 (i) —4(x+1)" =0
(b) (i) 7(2x-1)(5x+3)'=0 (i) 5(3-x) (2x+6) =0
© () (log,x—3)3-3)=0 (i) (Vx—4) (9/x-1)=0
(d) () x(x*-3)=7(x>-3)
(i) 5x(x>—5x+4)=6(x*—5x+4)

t ¢ ¢ ¢

be) Solve the equation 6% —4x3* =0.

[5 marks]

b2 Find the exact solution to the equation 2 x5 —7x10* = 0.
[6 marks]
Solve (3x — 1)"2’4 =1 [4 marks]

Solving equations by substitution

There are certain types of equation which you should know how
to solve. In this section we shall focus particularly on quadratic
equations, since we have a formula for solving them. We will see
how some complicated-looking equations can be turned into
quadratic equations by means of a substitution.
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Worked example 3.2

/

Solve the equation x* —4 =3x2.

@
A substitution y = x2 turns this into a® Let y = x?. Then the equation becomes
quodrotic equation, since x* =y?2. y2—4 =3y

()
This is a standard quadratic® y2—-3y—4=0
equation, which can be
= +1y—4)=0
factorised. (y+1y=4)

& y=

()

Use the substitution to find the ® x% = -1 (not possible, reject)

corresponding values of x. or

f
ii
|
4
{
—lory=4 i'
4
|
{
]

0"
R\
Y
EXAM HINT
Note that you should explicitly state that you have rejected
the possibility x2 =—1. Do not just cross it out.
' It may not always be obvious what substitution to use. It is quite
; common to be given an exponential equation which needs a
substitution; in such cases, look out for an a>* or (a?)" term,
. . 2
A both of which can be rewritten as (a*)".
]
Worked example 3.3
| Solve the equation 2(4* +2)=9x2*,
x 2 * j
£ Note that 4x = (22) =22 = (2") , Let y = 2*. Then the equation becomes
'Z soa su.bstitution y= ?X turns.this 2(y?+2)=9y g
info a quadratic equation. R
111 ‘
—
1) <
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continued . . .
()
This is a standard quadratic * 2y?—9y+4=0 i
equation, which can be factorised. o (2y—1)(y—-4)=0
1
o
=—ory=4
Y > Y
o 1
Use the substitution to find the values * Therefore 2% = 5 x= ~1
of x. o5 —
=>x=2 J
‘AM#M'W‘_‘*‘AH—I JI‘ANMM

. Exercise 3B

1. Solve the following equations, giving your answers in exact
form.
(a) (i) a*—10a>+21=0 (ii)) x*—-7x*+12=0
(b) (i) 2x*+7x*=15 (i) a®+7a°=38
36

(o) () 962—4=i2 (i) x*+—==12
X X

(d) () x—6Jx+8=0 (i) x-10Jx+24=0

7% 2. Solve the following equations.
(a) e** +16e* =80
(b) 25* —15%X5*+50=0
(c) log,x=(log, x2)2

A Solve the following equations.
(a) e* —9e*+20=0
(b) 4*—=7%x2*+12=0
() (logyx)*—3log,x+2=0 [15 marks]

Solve the equation 9(1+9*")=10x 3*. [5 marks]

=5
If a* =—+6 where a>0 is a constant, solve for x, leaving

ax
your answer in terms of a. [5 marks]
* a Solve the equation log, x =6—5log, 2. [6 marks]
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EXAM HINT
KA ——

If you are asked to
sketch @ graph, you
only need fo show
the overall shape
and indicate the
jmportant features.
Occasionally you
may be asked to
draw @ grcpt\\, in
which case fhe
graph should be
accurate gnd to
le, and you
Ss;cclj\d use a ruler for
straight lines.

EXAM HINT
A

 See Calculator
}Ei\\s cheets 2 and
on the CD-ROM fpr
a guide o sketcbmg
graphs and finding ~ §
the main features. o

Z

BN

Topic 2: Functions qu equations

Features of graphs

In this course you will meet many different types of equations
and will learn various techniques for solving them. You already
encountered quadratic, exponential and logarithmic equations
in chapters 1 and 2, and they are very common in applications,
but you may also need to solve equations which do not belong

to one of these standard types. Approximate solutions to such
equations can be found by using graphs.

Graphs are simply another way of representing a relationship
between two variables. For example, we can write y = x* or draw

Graphical calculators can be very helpful in sketching or drawing
graphs. In this section we will examine important features

you should look for when plotting graphs with your graphical
calculator; we will also discuss some limitations of this method.

The main features you should indicate on your sketch are:
e the y-intercept — this is where x =0
e the x-intercepts (zeros) — these are where y =0

e maximum and minimum points.

If the graph you are sketching is completely unfamiliar, it can
be difficult to choose a good viewing window. If the window
is too small, you may miss important parts of the graph; if it is
too large, you may not be able to distinguish between features
that are close together. This is why it is useful to have a general
idea of the overall shape of the graph before trying to plot it.

It is important to learn about the graphs of different types of
functions, even if you have a graphical calculator available.

© Coml?riglge University Press 20"
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Worked example 3.4 '

x*—16x

Sketch the graph of y = .
X+

Can we quickly deduce any of the ¢ Zeros occur where (
important features? x?—16x=0
When x=0, y =0, so the graph x(x?-16)=0 i
goes through (0, 0). ]
We also know that the zeros #(x—4)(x+4)=0
(x-intercepts) occur when the x=0,4,-4
numerator is zero, and we can find
those points by factorising.
\
We don’t know much about the °.. From GDC:
shape of the graph, so use a GDC (~0899,7.55) ¥
to plot it.
The viewing window should include v!
-4 and 4. ]
There appear o be one maximum
and one minimum point; if needed, z K
.

we can find their coordinates with
the GDC too.

\

(0.899. —7.55)
\AL‘AMF’IM—‘M»M“MHPJ/““M‘HW‘

N

Some graphs may have asymptotes.

KEY POINT 3.2 !

An asymptote is a straight line which the graph
approaches as either x or y gets very large.

Asymptotes are usually shown on graphs as dotted lines.

Vertical asymptotes occur where a function ceases to be
defined. They are vertical lines of the form x = a. For example,

1
y= 3 has an asymptote x =3 (because we cannot divide y = In(z? — 1)

by zero), and y =In(x* —1) has asymptotes x =—1 and x=1
(because we cannot take a logarithm of zero).

r—. _ C a b ri d."e_, n i_vers j i — 1 W —— SjALg_ebEaic it{uctuy;gs 7 28
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Start with a standard viewing <* Using GDC: ‘
window with both x and y 4 y
between —10 and 10. ]
It looks as if there is something g
interesting happening for x-values
between O and 3; zoom in to g
confirm that there is a maximum : et 12 i
pointat x=1. {
There also seems to be a horizontal ;
asymptote. We know that e * . 1
approaches 0, so it is likely that I ‘
the asymptote is y =2.

o= o ™ r? ¥

Horizontal asymptotes indicate long-term behaviour of the
function; they are lines that the graph approaches for large
values of x (positive or negative). They are horizontal lines of
the form y = a. For example, y =e *+5 has an asymptote y =5.

Since asymptotes are not actually part of the graph, they

will not show up on your calculator sketch. But you can find
approximately where they are by moving the cursor along the
graph towards large values of x or y and estimating what y
or x value the graph seems to be approaching. To find the
exact location of an asymptote, you need to use knowledge of
the function in question - for example, the fact that you cannot
divide by zero or that e™ approaches zero as x gets large. You
will only be asked to identify the exact position of asymptotes
for familiar functions.

Worked example 3.5

Sketch the graph of y = xe™ +2.

(1,2.37)

<

See Prior learning
section I on the
CD-ROM  for an
introduction to the
modulus function<1
|x|. Make sure you
know where to find it s

78  Topic 2: Functions and equations

Note that in the above example, although the line y = 2 is an
asymptote, the graph actually crosses it when x =0. This is fine,
as the asymptote is only relevant for large values of x.

Vertical asymptotes can sometimes be unclear. In the next example,
the graph approaches the vertical asymptote from both sides, so
your calculator may attempt to ‘connect the points’ into a ‘V’ shape.
You must be able to identify for yourself that there is a vertical
asymptote between the two arms of the V’ and draw it correctly.

i Ao g ~ © Cambridge University Press 2012.
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Worked example 3.6

Sketch the graph of y=1In|x-2|.

\
) 1
It looks as if the two branches * Asymptote: X—2=0&x=2
of the' graph join at a point with Yy
x-coordinate equal to 2. However,

we know that In O is not defined,
so there should instead be an
asymptote at x=2.

Sonsn

0.693

. Exercise 3C

* 1. Sketch the following graphs, indicating the axis intercepts,
asymptotes, and maximum and minimum points.

(@) () y=x'-x’+1 (i) x*—x?
(b) (1) y:(x—l)e" (i) y= (e —1)2
© @ y= (i) y=1n(x+2]
-1 X—
N . _|x2—4|
(@) @ x+2‘ @ y= x+1
@ Sketch the graph of y = xInx. [4 marks]

@ Sketch the graph of y = le .
nx

[6 marks] “A“/lﬂ\l

d
yestion 4 you nee
\tr(\) pr\ore different

dows to
viewing win
locate all the maximum

gnd minimum points.

) 2( 42 _
k) Sketch the graph of y = X 29) for —5< x <6. Mark the
ex

coordinates of all zeros and maximum and minimum points.

[6 marks]

ra / @ Cqmbrldge Un|v nsny Press 201 2 i
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Using a graphical calculator to solve
equations

y=e® Some equations cannot be solved analytically, that is, you
cannot rearrange them to get x = a certain number using the
standard set of operations and functions mathematicians allow.
0.6 Nevertheless, there may still be values of x which satisfy the
y== equation. An example of such an equation is x =e™*.

One good way to find these solutions is by plotting both sides
of the equation with a graphical calculator. The x-coordinate of
the intersection point gives the solution to the equation - in this
case 0.567 to three significant figures.

In fact, it is W(1). However, does knowing this actually give us any more information
about the solution to the above equation?

The solution to x = e can actually be written in terms of the ‘Lambert W Function’. 5

) ! Worked example 3.7

Solve the equation x? =3Inx+2.

There is no obvious substitution or® y

factorisation, so plot both sides of )
) the equation on the calculator and
; make a sketch.

PRSP

s
o VR

I, y=31In(z) +2

{

()
Use the calculator to find the ® x=2.030rx=0.573 (35F) !
intersection points. (i EBE l

\ —

e e s p o AP N, s

W

IXAM HINT

~!

When using your calculator to solve an equation, you

must show a sketch of the graph and round the answer to
111 an appropriate degree of accuracy (usually 3 SF).

© Cambriglge Un_iv_ersity,Pr.ess:ZO"
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Solving equations graphically has some problems: you may not
know how many solutions to look for, or how to set the viewing
window so you can see them all; if two solutions are very close
together, you may miss one of them. This is where you need

to rely on your knowledge of the graphs of different types of
functions to make sure that the calculator is showing all the
important features.

Many graphical calculators have functions for solving special
types of equations. In particular, you may be able to solve
polynomial equations (those involving only positive integer
powers of x) without having to graph them. Your calculator
may also have some sort of equation solver tool, although
this has drawbacks similar to those associated with graphical
methods.

See Calculator skills sheet 5 and 6 on the CD-ROM for
more details.

Worked example 3.8

Solve the equation x* =5x* —2.

methods for solving cubic equations,
let’s try using the polynomial
equation solver on the calculator.
First, the equation needs to be
rearranged.

As we don't yet know any algebraic® x

X =-0.598,0.680,4.92 (35F)

EXAM HINT
ExAT ——

"l the question
does not ask for

an exact answer,
you can take _"f

as an indication
that o grophica!
<olution might be
appropriate: \f Y;?U
cannot se€ another
quick way o solve
the equation, Iy
using your ¢

>—H6x24+2=0

(using GDC)

|culator.

e P

J

EXAM HINT

You can use the graphical method in the non-calculator
paper, too. Questions in the non-calculator paper usually
just ask you to find the number of solutions, rather than to
actually solve the equation.

© Cambridge University Press 2012.
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Ly = 1

Sketch graphs of both sides of the ¢
equation; these are graphs you
should know how to sketch without
a caleulator.

@
The solutions correspond to the ®
intersections of the two curves.

N

-

pe

2,

f"&-

m™ B

3 [ Worked example 3.9

Find the number of solutions of the equation e* =4 — x?.

TR A A s se A0 A0 an oo s sn A0 A0 B anne.

/

There are 2 solutions.

y=4—z2
\

B e o

\f_‘-h_r-—‘_t‘m__ OV W . W o VSOSN ,*‘wA_J

.
. Exercise 3D
1. Solve the following equations, giving your answers to
3 significant figures.
(a) (1) x*=3x-1 (i) x*+4x>=2x-1
(b) (i) e*=x+1 (i) e*=x*-3
(c) (i) e*=Inx (i) e*lnx=x°-x
&“ Solve the equation xInx =3—x [4 marks]
The equation Inx = kx, where k > 0, has one solution. How
many solutions do the following equations have?
(a) Inx? =kx
(b) ln(l) =kx
X
(c) Inx = kx [6 marks]
Find a value of k such that the equation sinx = kx has
7 solutions, where x is measured in degrees. [6 marks]

82  Topic 2: Functions and equations
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Working with identities

KEY POINT 3.3

An identity is an equation which is true for all values of x,
for example x X x = x°.

The identity sign = is used to emphasise that the left-hand side
and right-hand side are equal for all values of x, but frequently
an equals sign is written instead.

Identities are very useful for manipulating algebraic expressions.

Operations such as multiplying out brackets are actually
applications of identities; for example, when expanding the
expression (x - 2)(x + 1) to give x? — x —2, we are actually using
the identity (x+a)(x+b)= x>+ (a+b)x+ab, which holds for
all a,b and x (in particular for a =-2, b =1 and unknown x).

When solving equations, we can use any known identities or
derive a new one where needed. To derive or ‘show’ an identity, we
essentially rewrite a given expression. We must start from one side,
and use known rules and identities to transform the expression
step by step until we reach the other side of the identity.

You may be unsure about which rules and identities you are
allowed to use. Anything listed as a ‘Key point’ in this book
is acceptable, as are basic algebraic manipulations such as
multiplying out brackets and simplifying fractions.

Identities

I: very important in

see

trigonometry;
chapter 9.

EXAM HINT
ExAT ——

You can choose

identity fo start
‘dea to start fro

more com
expressmn an

one.

which side of thfiom.

It is usually a goo

are

m the

licate
P d wor

towards the simpler

>

Worked example 3.10

Show that e@®nx+1n3) — 352

Start from the more complicated * LHS = gl#nx+in)
expression on the lefthand side.

First, take the multiple inside ® = g o
the log: plna=In(ar).

{
d

!

|
r
E
fi
|
§
|

INOT Tor printing naring or d pution.

.0. _ n(zx2)
Then |na+|nb=|n(ab). =¢
Finally, apply the cancellation * =g
principle. G \
Pl e . PN _I
\_ — B s .
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. Exercise 3E

1. Show that the following equations are identities.
(@) (1) (x - y)z +4xy = (x+ y)2
(ii) x*+y* = (x+y)(x2 —xy+y2)
(b) (i) log(xyz)=logx+logy+logz

(ii) log, b= —
log,a
2 _ L2 —
© @ =¥ o @ 2oy
a-b y—x

(d) (1) Yxt = ((/;)h (11) 24 4 Da = Datl

Summary
e Important methods for solving equations include factorising and substitution.

e When sketching graphs on your calculator, you may need to use your knowledge of the shapes
of common graphs to make sure you do not miss any important features, such as zeros and
asymptotes.

e You can use a graphical calculator to solve equations involving unfamiliar functions by finding
intersections of two graphs, one for each side of the equation.

e Identities are equations that are true for all values of x. We derive identities by transforming one
side into the other, using known identities.

Introductory problem revisited

Solve the equation iz =Inx.
X

y If you try to rearrange this equation to isolate x, you will find

1
that it is impossible. It is better to plot the graphs of y = ") and
y=Inx:

- There is one intersection point, and we find its x-coordinate
using the calculator. The solution is x = 1.53 (3 SF).

84  Topic 2: Functions and equations © Cambridge University Press 2012.
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Mixed examination practice 3
Questions on this topic usually come as parts of longer questions. This exercise
is intended to give you a feel for the level of difficulty you may encounter in the
examination.
% (a) Sketch the graphs of y =2*and y = 1 - x* on the same axes.
(b) Hence write down the number of solutions of the equation 2* =1—x2.
[6 marks]
Find the largest possible value of y = x?e™* for x €[0,5]. [4 marks]
Find the exact solution of the equation e* Inx = 3e*. [5 marks]
Find the equations of the vertical asymptotes of y = ————. [3 marks]
(ax+b)(x—c)
1
(a) Sketch the graph of — 5
e —
(b) State the exact equation of the vertical asymptote. [6 marks]
% a By using an appropriate substitution, find the exact solutions to the
equation x*+36=13x2 [6 marks]
% Solve the equation xInx +4Inx =0. [5 marks]
© Cambridge University Press 2012. 3 Algebraic structures 85
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In this chapter you
will learn:

* about the concept of
function

e the notation used to
represent functions

* about what happens
when one function acts
after another function

® how to reverse the
effect of a function

® about the reciprocal

~function, simple
rational functions and
their graphs.

Is the notation f(x) just
a label for a rule, or
does it help to open

up new techniques

and new knowledge? It
may surprise you fo learn
that the latter is actually the
case. Particularly in many
applications of calculus, we
do not need to know
exactly what the rule is, but
simply that it depends on
‘X', which may stand for
time, or height, or some
other quantity of interest in
the application.

86  Topic 2: Functions and equations

The theory of
functions

Introductory problem

Think of any number. Add on 3. Double your answer. Take
away 6. Divide by the number you first thought of. Is your
answer always prime? Why?

Doubling, adding five, finding the largest prime factor, ... these
are all actions that can be applied to numbers, producing a
result. This idea of performing operations on numbers to get
another value out comes up a lot in mathematics, and its formal
study leads to the concept of functions.

Function notation

A function is a rule where for each value you put in there is
exactly one value that comes out. In this section we will see how
to describe functions using mathematical expressions.

Suppose we have the rule ‘add 3 to the input, and we call this
rule ‘f’. In function notation, this is written as:

fix—>x+3

We read this as ‘the function f transforms x into x+ 3> An
alternative way of writing this is:

f(x)=x+3

Although conventionally the letters f and x are often used, they
are not intrinsically special. We could replace f with any other
name and x with any input value we like; whatever we call this
function and its input, the function will always do the same
thing to the input (e.g. add 3). The input is sometimes called the
argument of the function and the output is called the image of
the input.

© Cambridge University Press 2012.
ot for printing, sharing or distribution.
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Worked example 4.1

Given a function defined by g(x) = x? + x, find and simplify the following:
(a) g(2) (b) g») (c) glx+1)  (d) g(3x) (e) 4g(x~1)-3

Replace x with 2. < (a) 9(2)=22+2=06

Replace x with y. (b) gly)=y*+y

Replace x with (x + 1). Don't forget brackets! * (©) glx+N=(x+17+(x+1)
=x?+2x+1+x+1
=x?+3x+2

Replace x with (3x). Don't forget brackets! 2 (d) g(3x)=(3x) +(3x)

=9x% +3x

Replace x with (x — 1) and then multiply by (€) 4g(x—N-=3=4((x-17+(x-1)-5

A A“MA—L A “'m““&.—_.“‘\\_.,,n..\.. At

4 and subtract 3. =4x? - 2x+1+x-1)-3
=4(x*2-x)-3
. =4x2—4x—;“ |
\_ Y P

. Exercise 4A

If h(x)=3x? - x, find and simplify the following.

(a) () h(3) (i) h(7)

(b) () h(-2) (i) h(-1)

(c) () h(z) (i) h(a)

(d) (1) h(x+1) (i) h(x—2)

© @) %h(x)—h(—x)) (i) 3h(x)+ 4h(2x)

) @ he) (i) h(x)

2. If g: x> 1+1og, x, find and simplify the following. Caleulati o

ailcutations wi

(a) (i) g(100) (ii) g(1000000) <[logarithmswerecov—<]

(b) (i) g(0.1) (i) g(1) ered in chapter 2.

© @) g(») (i) g(2)

(d) (i) g(10x) (i) g(100y)

(e) () g(x)+g(x?) (ii) %(g(x)JrgG))

@ Cqmbf_dge Unlver Jty Press 20L2
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3. Ifu(x)=3x+1and v(x)=—x, find and simplify the following.
(@) () u(2)+v(9) (i) u(1)v(4)
(b) () u(x)+v(y) (i) u(2x+1)—v(4x)
(c) (1) 2u(4x)+3v(4x)  (ii) v{x?+1)+xu(2x)

Domain and range

A function is a rule that tells you what to do with the input, but,
to be completely defined, it also needs to specify what type of
input values are allowed.

KEY POINT 4.1

The set of allowed input values is called the domain of the
function. Conventionally, we write it after the rule using
set notation or inequalities.

Worked example 4.2

Sketch the graph of f(x)=x+1 over the domain

7 (@) xeR,x>1 (b) xeZ
; EXAM HINT
If you are instructed to sketch the graph of f(x), this
;

means the graph of y= f(x).

-
First, sketch the graph for xeR (all real
numbers). 31

<

<
I

~

g

8

¥

 aANy P
L mm‘h\r‘_‘fﬂ“"‘_&m

ji

D <
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continued . ..

\

Discard the part of the graph which is outside 2 (2) Y
the given domain. Since ‘x > 1’ does not N
include the endpoint 1, we label the point (1, 2) /: f(z)
with an open circle. 2
1 .
2 -1 12 3
~1
_9
If the domain is x € Z, the graph exists only *® (b) \
at whole numbers, which we label with closed 3 °
circles. y=/@
21 e
X J
o 12 3

e s s

poTeN
L | P -h\!—‘\q_. Ana A Aee®bfia 0o A Aean n. A Adentfia,, A A

\

If the domain is not explicitly stated, you can assume that it
consists of all real numbers. You may wonder why we would
ever need to consider any other domain. One reason might be
that we are modelling a physical situation where the variables
can only take particular values; for example, if x represented the
age of humans, it would not make sense for x to be negative or
much greater than 120.

Another reason is that the function may involve a mathematical
operation that cannot handle certain types of numbers. For
example, if we want to find the largest prime factor of a number,
we should only be looking at positive integers. When working
with real numbers, the three most common reasons to restrict
the domain are:

« you cannot divide by zero
« you cannot take the square root of a negative number

« you cannot take the logarithm of a negative number or zero.

- © Cambridge University Press 2012.

" It is quite tempting to
say that dividing by
zero results in infinity.

£P

However, doing this leads to

some unfortunate

consequences, such as all
numbers being ‘equal’l
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What is the largest possible domain of h: x

{
Check for division by zero. M There will be division I7y zero when x —2=0. ]
{

number. number when x + 3 < 0. 1

Decide what can be allowed in the function. ® x2-3andx#2

A Worked example 4.3

+x+3?
X

a

= \

Nl |

EXAM HINT
N

4 @)\ Remember that
y6u can restrict the
viewing w'mc!owh’ro
the x-values in the

domd\ﬂ-

N Worked example 4.4

We can also use interval notation to write domains;
in the previous example we could write the answer as
x€[-3,2[U]2,00].

Once we have specified what can go into a function, it is
interesting to see what values can come out of the function.

KEY POINT 4.2

The set of all possible outputs of a function (y-values on the
graph) is called the range of the function. The easiest way of
finding the range is to sketch the graph (possibly using your
GDC). Be aware that the range depends on the domain.

b [ Find the range of f(x)=x?+3 if the domain is
(a) xeR (b) x>2
g Sketch the graph of y=x2+3 for xeR.** (a) K
Range Lj
¢
' y=f(z) ]’
{
: {
.z Domain 1
— .
SR 1 2 3 \
\
d
-.'? { 1
E—
.:, <
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continued . . .

()
From the graph, observe which ®
y-values can occur.

Sketch the graph of y=x?+3 for x>2. ‘ (b)

Range:y 23

‘__% oY WSS
Aae A, A e A A A

y=f(z)
Domain
B B 1 2 3

1
<
L8 \
From the graph, observe which ® Range: y >7 ]
. y-values can occur. " DY,

. Exercise 4B

1. State the largest possible domain and range of the following
functions:

(a) f(x)=2".
(b) f(x):ax,a>0.

State the largest possible range and domain of the following
functions:

(©) f(x)=log,x.
(d) f(x)=log,x,b>0.

2. Find the largest possible domain of the following functions.

. 1 . 5
(@) () f(x)= P (i) f(x)= —
' B 3 ) _x
b) @ f(x)= (x—2)(x+4) (i) g(x) x2-9
(©) () r(y)=+y*-1 (i) h(x)=vx+3
. _ 1 . __ X
(d) () f(a)= I (i) f(x) —
© Cqmbﬂgg.e Univepsity Press 2002, gd gl U b

Exponential ~ and
logarithm functions
<1 were  covered in <~1

chapter 2.

What are the largest
&% possible domain and
range of f(x)=(-2)"2
This function illustrates why it
is important to be careful in
deciding how to define a
continuous function — an
important concept in higher
mathematics.
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@) () a(x)=_+— (i) f(x)= x+l+ﬁ

(f) () f(x)=+x*-5 (i) f(x)=4vx*+2x-3

(® O f(x):x/;+ﬁ_xs+5

(i) f(x)=e*+~2x+3-

x*+4

3. Find the range of the following functions.
(@) () f(x)=7-x2, xeR (i) f(x)=x*+3, xeR
(b) () g(x)=x2+3, x=23 (i) {x)=x+1L x>3, xeZ
(©) @) flx)=|x-1 (i) f(x)=]2x+3]
(d) () d(x):i, x2-1 x#0 (i) q(x):3\/;, x>0

See Prior Learning

section I on  the The function f is given by f(x)=/In(x—4). Find the

CD-ROM  for the domain of the function. [4 marks]
<1 definition of the
modulus  function,

x| Find the largest possible domain of the function

1
f(x)= x+2_x2—5x+6+x2+1 [5 marks]

a Find the largest possible domain of the function
g(x)=1In(x*+3x+2). [5 marks]

Find the largest set of values of x such that the function

8x—4
ol takes real values. [5 marks]

f given by f(x) =
B Define f(x)=+x—a+In{b-x).
(a) State the domain of the function if
(i) a<b (ii)a>b
(b) Evaluate f(a). [6 marks]

Composite functions

We can apply one function to a number and then apply another
function to that result. The overall rule linking the original input
value with the final output value is called a composite function.

ppic 2: Functions and equations : origa i\qsi I;GS? 2] . a
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KEY POINT 4.3

If we first apply the function g to x and then apply the
function fto the result, we write this composite function as

flg() or fglx) or fogx)

As we shall see later, it is useful to refer to g(x) as the inner
function and f(x) as the outer function.

For the composite function fg(x) to exist, the range of g(x)
must lie entirely within the domain of f(x), otherwise we would
be trying to put values into f (x) which cannot be calculated.

EXAM HINT
A

None of these
three expressions
for a composite
function is "better
than the others. U§e
whichever oné suits
ou, but be aware
that in the exam
you must be able
to interpret any o
them. Remember
the correct order:
the function nearest
to x acts first!

Worked example 4.5

If f(x)=x?and g(x)=x-3, find
(@) fog) (b) foglx) () &f(x)

EXAM HINT

Notice that to work this out
we did not need to find

the general expression for
feg(x)

Replace the x in g(x) ¢ (©) g(f(x))=g(x?)
with the expression for —x?_3

F(x).

We need to evaluate g(1) and then (a) g()=1-3=
apply fto the result. F(=2)= (-2 =
S f{g(1))=4

Replace the x in f(x) with ¢ (b) flg(x))=1f(x-3)=(x-3)
the expression for g(x). =x?2-06x+9

pon T
L GNPy W e S e LY ﬂm“’*——*"“‘l

PV Y Y VAN o
— e Y s = ¥ e
e B o A e s ba A e aa A = VOUPYRY

.

@J_Cthr_igigg University Press 2012.

INOT TOr printing naring or d DUl

L4 T|1_e tIEo_rjy of functions 93




| T

Notice that f ( g(x)) and g(

=

"/ i

f (x)) are not the same function.

It is more difficult to recover one of the original functions from
a composite function. The best way to do this is by using a

substitution.

Worked example 4.6

N\

If f(x+1)=4x>+x,find f(x).

{
Substitute y = inner function. * Let
y=x+1
{
\
Rearrange to make x the subject. x=y-—1 ]
y
Replace all the x's by y - 1. fy)=4(y -0 +{y-1 f
=4y2-8y+4+y-—1
=4y? —T7y+3
1
<
We were asked to write the answer in terms of x. < F(x)=4x2 —7x+3 :}
M‘I

r-.r—ﬂ-.’*-ﬁw__’djr‘“m&___‘

. Exercise 4C

94

dgec Zhncion oz sadtion: o

1. If f(x)=x>+1and g(x)=
(@ @) g(f(0)
(b) (i) gg(x)

© @) gg(va+1)
d @) ggf(y)

Find f(x) given the followi
(@) (i) f(2a)=4

(2

(b) (i) f(x+1)=3
© () f(1- y)
(d) @) f(e*)=1

e (x)=

AR - ——

© Cambridge University Press 2012.

3x+2, find:
(i) fg(1)
(i) fog(x)
i) fof(y-
(i) gfg(2)

)

ng conditions:

b3
w f(2)-2
(i) f(x-2)=x>+x
(i) f(y*)=»?
(i) f(3n+2)=In(n+1)

x?+1and g(x)=3x+2, solve fg(x)= gf (x).[4 marks]

Y Ld
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X

alff(x)=3x+1andg(x)= 2+25,solvegf(x)=0. [5 marks]
x

Functions g and h are defined by g(x)= Jx and
h(x) _ 2x-3

x+1°
(a) Find the range of h.
(b) Solve the equation h(x) =0.

(c) Find the domain and range of g oh. [6 marks]

a The function f is defined by f : x — x°. Find an expression
for g(x) in terms of x in each of the following cases:

@ (fog)(x)=2x+3
(b) (gof)(x):2x+3 [6 marks]

Functions f and g are defined by f(x)=+/x>—2x and
g(x)=3x+4. The composite function f o g is undefined for
x € la,bl.
(a) Find the value of a and the value of b.
(b) Find the range of f o g. [7 marks]

m Define f(x)=x—-1, x>3and g(x)=x%, xeR.
(a) Explain why g o f exists but f o g does not.
(b) Find the largest possible domain for g so that f o g is

defined. [6 marks]
. . x+2
g Let f and g be two functions. Given that (f o g)(x)= 3
and g(x)=2x+5, find f(x—1). [6 marks]

Inverse functions

Functions transform an input into an output, but sometimes
we need to reverse this process - that is, to find out what input
produced a particular output. When it is possible to reverse
the actions of a function f, we can define its inverse function,
usually written as .

For example, if f (x)=3x, then f~'(12) is a number which
when put into f produces the output12; in other words, we

INO FO
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are looking for a number x such that f(x)=12. In this case,

f1(12)=4.

EXAM HINT
EXAM = —
Make sure YoU do
not get confuse
by this notation.
With numbers,

the superscriP!
_1" denotes the

rec\procd\, e'g .

f(4) =12

f112) =4 12

To find a formula for the inverse function, you must rearrange
the formula of the original function to find the input (x) in
terms of the output (y).

With functions, f-!
denotes the inverse

function of £

KEY POINT 4.4

To find the inverse function f~'(x) given an expression for
fx):

1. Start off with y = f(x).

2. Rearrange to get x (the input) in terms of y (the output).

3. This gives us f (), but often we are asked to find
f(x); we do this by replacing every occurrence of y in
the expression with x.

Worked example 4.7

1+
Find the inverse function of f(x)= 3_x .
—x
... I <
Write y = f(x). Y=, y
Make x the subject of the formula. Then the right-hand ¢ y@-x)=1+x
side expression is f'(y). &3y —yx=1+x

& dy—l=x+xy }‘
& By-1=x(1+y) 3
_ d
= = M ‘l

1+y

Sy —1

L Fy)=

) Tty
1
.. g 5x —1 t
Replace y with x to get f'(x).* F(x)= Tt x \
4
e e A s A A j/"""‘“‘“-»_,_‘wJ

.

.
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Now we have learned how to find inverse functions, there are
some important facts we need to know about them:

EXAM HINT

EART ———

« The inverse function switches inputs and outputs; graphically
this is equivalent to switching the x-and y-axes.

~ . See Calculator
Skills sheet 7 on the
CDROM for how to

ketch the graph ©
verse function

an in
on your calculator.

KEY POINT 4.5

The graph of y = f~'(x) is the reflection of the graph of
y= f(x) in the line y =x.

Y

EXAM HINT
ExAT —

~ Ifyouhave
found an algebraic
expression for
f-1(x), you can
it is

check whether |
correct by plotting
both f(x) and f(x)
on the same OX&s
and looking for
symmetry.

L=

X

y=f"(x)

o If you apply a function and then undo it, you get back to
where you started.

KEY POINT 4.6

FHf)=f(f"(x)=x

The function g(x)= x, for which the output is always the same
as the input, is called the identity function. Thus f o f and
f o f 'are both equal to the identity function.

y © Cthﬂdgg University Press ZQ] 2.4 —rr TR | Th‘e_theq_r‘ly of_FLJnctiqgs 97
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P f Worked example 4.8

The graph of y = h(x) is shown. Sketch the graphs of y=h""'(x)and y =hoh™'(x).

Y

y = h(z)

The graph of y =h-'(x) is obtained by reflecting o (@) V y=h) I
the graph of y =h(x) in the line y =x. ] J
p
é
y=z {
] - i
_1/ y=h"(z) P
T / \\\\\ T ;
hoh-' is the identity function, so y =hoh '(x) * (b) i ‘;
simplifies to y = x. ;
§
f
! ~
d
‘
~
-
e ot o s po AP e,
\ - - y

o Reflection in the line y = x swaps the domain and the range
of a function (because it swaps the x-and y-coordinates).

KEY POINT 4.7
The domain of f~'(x) is the same as the range of f(x).

The range of f'(x) is the same as the domain of f(x).

98 pic Zifunct;ons\qu equations AL we Com!or! Uni\{ersity;"es§2. AT -
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. Exercise 4D
. Find f~'(x)if
(@) () f(x)=3x+1 (i) f(x)=7x-3
. _ 2x 2 . _ X 1
©) O =375 %3 () F)= 5 2
. _X—a .. _ax—1 1
(o) (i) f(x)—x_b,x;éb (ii) f(x)—bx_l,x;tb
(d) () f(a)zl—a (ii) f(y):3y+2
(© () f(x)= 3x—2,x2§ (i) f(x)=2—5x xS%
) @) f(x):ln(l 5 ) x<0.2 (i) f(x):ln(2x+2) x>-1
(g) (1) f(x):7e§ (ii) f(x):9e1°"
(h) (1) f(x):x2 10x+6, x<5 (i) f(x)=x*+6x—-1,x>0

2. Sketch the inverse functions of the following functions.

(a) y (b) y
(c) y (d) y

 — - © Cambridge University Press 2012. I Lo tll g4 The Ifheqr off nctions 99
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The following table gives selected values of the function f(x).

x -1 0 1 2 3 4
ol < | -1 3| o | 7| 2
(a) Evaluate ff (2)

(b) Evaluate f ’1(3). [4 marks]

3
The function fis defined by f:x =3 —-2x, x < >
Evaluate f! (7) [4 marks]

Given that f(x)=3e?*, find the inverse function f(x).

[4 marks]
a Given functions f:x —2x+3 and g:x — x?, find the
function (f o g) . [5 marks]
The functions fand g are defined by f:x > e** and
gixt>x+1.
(a) Calculate f(3) x g7'(3).
(b) Show that (feg) " (3)=In+/3-1. [6 marks]
8 Let f(x)= Jx and g(x)=2x. Solve the equation
(f'og)(x)=0.25. [5 marks]
x*—4
) The function fis defined for x <0 by f(x)= o
X
Find an expression for f~'(x). [5 marks]

Let f(x)=In(x-1)+In3 for x>1.
(a) Find f'(x).

(b) Let g{x)=e*. Find (go f) (x), giving your answer in
the form ax + b where a,b € Z. [7 marks]

A function is said to be self-inverse if f(x)= f~'(x) for all
x in the domain.

(a) Show that f (x) = ! is a self-inverse function.

x
(b) Find the value of the constant k so that g(x)= 3x+—k5
x

is a self-inverse function. [8 marks]

100 pic Zifunctions\qu equations AL we Com!or! Uni\fersity;"es§2. .
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Rational functions

There are many situations where one quantity decreases as
another increases.

For example, the amount of your phone credit decreases as the
number of text messages you send increases; moreover, as the
number of messages increases by a fixed number, the credit
decreases by a fixed amount - this is called linear decay.

Another example is radioactive decay, where the amount of a
radioactive substance halves in a fixed time period, called the
half-life; in this case, as time increases by a fixed number, the
amount of substance decreases by a fixed factor - this is called
exponential decay.

credit($) m (mg)

+10

5IO messages

linear decay exponential decay

In this section we look at a third type of decay, called inverse
proportion, where as one quantity increases by a fixed factor,

another decreases by the same factor. For example, if you double
your speed, the amount of time it takes to travel a given distance

will halve. If the total distance travelled is 12 km, then the
equation for travel time (in hours) in terms of speed (in km/h)

12
is t = —. This is an example of a reciprocal function, which has
v

the general form f(x)= k
x
v (km/h)

t (hrs)

@JCqmbLinge University Press 2012.
=) . : o f¥hnk

t (years)

- 4The ﬂEqQ' of nynctiqgs 101

Y
Exponential  func- (%
tions were covered in
chapter 2. See Prior
<1 Learning section Q <[
on the CD-ROM for
a review of linear
functions.

EXAM HINT
ExAT —

The rec'\Procc\ of
a non-zero re‘o

X is —-
number X

For example, the
rec'\proco\ of -

J
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Graphs of reciprocal functions all have the same shape, called

a hyperbola. A hyperbola is made up of two curves, with the
axes as asymptotes. The function is not defined for x =0 (the
y-axis is a vertical asymptote), and as x gets very large (positive
or negative) y approaches zero (the x-axis is a horizontal
asymptote). This means that neither x nor y can equal

zero. The two parts of the hyperbola can be either in the first
and third quadrants or in the second and fourth quadrants,
depending on the sign of k.

I1 I

I1I IV

Quadrants

KEY POINT 4.8

A reciprocal function has the form f(x)= E
x
The domain of f is x # 0 and the range is y # 0.

The graph of f(x) is a hyperbola.

k
What is the inverse of a reciprocal function? If y = —, then
x

k. k

xy =k and hence x = —. This means that f~'(x) === f(x), so
¥ X

the reciprocal function is its own inverse. We can also see this

)

02 Topic Z,qunctions\qu equations AL © Com_br! e University Press ZQJ 2. Ry -
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from the graph: a hyperbola is symmetrical about the line y = x,
so its reflection in the line is the same as itself.

KEY POINT 4.9

k
The reciprocal function f(x)=— is a self-inverse function;

thatis, f~'(x)= f(x). g

Related to reciprocal functions, rational functions are a ratio
p(x)
q(x
variety of situations where one quantity decreases as another
increases. The following example illustrates one such situation.

Worked example 4.9 :j

A rectangular piece of card has dimensions 30 cm by 20 cm. Strips of width xcm and ycm are | r
cut off the ends, as shown in the diagram, so that the remaining card has area 450 cm?.
-b
(a) Find an expression for y in terms of x in the form y = > i
X —

of two polynomials: f(x)= can be used to model a wider

(b) Sketch the graph of y against x.

Y cml

30 cm

20 cm

L L) © Cqmbﬂgg.e Univepsity Press 2082 ¢4 vigd U & 4 Th‘e_ theq,r! of fvnctiqgs 103



D ( continued . . .
’ ]
Write the equation for the remaining area in terms ¢ (a) (30 =x)(20 - y)= 450 )
| of xand y. )
4 450 {
we want to make y the subject, so divide by * 20-y= %0 <
. —-X 4
(30— x) (rather than expanding the o450 y
.I brackets). y= 30— x ¢
_20(30—x)-4B0 |
' 30 —x f
_ 150 - 20x E,
30 —x [
4  20x-150 $
To get the expression in the required form, multiply top YT T30 {
and bottom by —1. 4
We can use a GDC to sketch the graph. Only positive * ) 4 ;
values of x and y are relevant in this situation. t,
i
\ 5 j
| )
’, 7{5 x}
] K — e 2 A JI“%».JJ
I

Is zero the same as
‘nothing’? What
happens if you say

that the result of
dividing by zero is infinity?

What would % be then?

In the above example only positive values of x and y were

relevant, but let us look at the graph of f(x)= % over

the whole of R . The function is not defined at x =30 (as we
would be dividing by zero), so there is a vertical asymptote there.
The y-intercept is (0, 5). We can find the x-intercept by setting
the top of the fraction equal to zero, which gives (7.5, 0). The
graph looks like a hyperbola with horizontal asymptote y = 20.

University Press 2012. :
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The position of the horizontal asymptote can be discovered
by looking at the first equation we found for y in Worked

450
example 4.9, which can also be written as y =20+

. As
x=30
x gets very large (either positive or negative), x —30 gets very

large, so

gets very small. Therefore the value of y gets

closer and closer to 20. Another way to find the asymptote is to

think about what happens as x gets very large in the equation
_20x-150

0 the terms containing x in the numerator and
x p—

denominator become much larger than 150 and 30, so these two

20x
constant terms can be ignored, leaving y =~ —— = 20.

The example f(x)= w illustrates all the important
x j—
. . . ax+b
properties of rational functions of the form f(x)=

cx+d
KEY POINT 4.10

The graph of a rational function of the form f ( x) _ :Z
cx
is a hyperbola which has

d
« vertical asymptote x = —— (where cx+d =0)
c
. a
« horizontal asymptote y =—
c
b
o x-intercept at x = —— (where ax+b=0)
a

« y-interceptat y = S (where x=0)

Knowing the position of the asymptotes tells you the domain
and range of the function.

' ©1Cqmb_ridge University Press 2012.
- INO O D . I. na .‘. O .». .

EXAM HINT
S

In the excmingﬁon
ou can just fin
the horizonc)o
mptote BY
gizidg)ng the two
coefficients of x in
the numerator an
denominator:

EXAM HINT
kxR ——

ake sure
N;u include all
asymptotes an
intercepts when :
sketching grqphs o
rafional functions-
The 'mterczp’rs sh;ue

ou determ

tﬁ\\?cz\ quadrants the
graph lies in.

.
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( Worked example 4.10

k . . . 3x—4
%& Find the domain and range of the function f(x)= R
X+
o 1=
The only value excluded from the domain ® 2x+1=0
is where the denominator is zero. 1
=X = —E

The domain is x € R, x;«r&—l

Sketching the graph can show us the range. ¢ Horizontal asymptote:
Find the horizontal asymptote by dividing 3
the coefficients of x. Y= 2
Find the intercepts to decide which quadrants o Intercepts:
the graph lies in. x=0=y=-4

4
y=O=>5x—4=O:>x=g

Sketch the graph. 2 4

Mo ri o
O e At ab e Ale aba A et f e s a b d et a PR s d o Ase b o A, et

-‘- —4

2)
The range is yeR,yiE

S

\

a
S P -..AJ" Amisom, Ao

\_ o~

E . Exercise 4E

\% 1. Find the coordinates of the axes intercepts of the following
rational functions.

(@ () f(x)='1x:31 (i) f(x)=2;‘:15
00 B

106 Topc 2 Fortorsondoqtons @ Combridg Urbrsiy Fras 2012
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@ () y-= 4x+3

x—1
3x+2
2x—1
3—x
2x+5
3
x—2

(b) @) y=

(0 (i) y=

(d) (@) y=

e

W ———

3 -

2. Find the equations of the asymptotes of the following graphs.

%A 3. Sketch the graphs of the following rational functions,

labelling all the axes intercepts and asymptotes.

®) () y=7—

© 0 y=—s

@@ y=-2

% 4. Find the domain, range and inverse function of the
following rational functions.

@ 0 flx)=>

2
x-3
2x+1
3x—1
5-2x

x+2

®) () flx)=

© @ f(x)=

@ @ flx)=

(ii) f(x)=

EERN

(ii) f(x)zi

x+1

B 4x—5
ii X)=

( )f( ) 2x+1

_3x-1

4x—3

(ii) f(x)

Find the equations of the asymptotes of the graph of

_ 3x-1
4 4-5x
O Let f(x)-——.
x+3

(a) Find the domain and range of f(x).

(b) Find f'(x).

~ ©Cambridge University Press 2012.

[3 marks]

[5 marks]
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(a) Sketch the graph of y = 3 .
X

3
(b) Let f (x) =——, x #0. Write down an equation for
X

(). [4 marks]

3x—1

[5 marks]
x—=5

% a Sketch the graph of y =

ax+3
3’ x # 4, where ae R.

9 A function is defined by f: x

2x —
(a) Find, in terms of a, the range of f.
(b) Find the inverse function f~'(x).

(c) Find the value of a such that f1is a self-inverse
function. [5 marks]

Summary

In this chapter we introduced the concept of a function: a rule where for each value you put in
there is exactly one value that comes out.

To fully define a function, as well as stating the rule, we also need to specify the domain - the set
of allowed inputs. Once we know the domain we can also find the range - the set of outputs that
can be produced.

A function can act upon the output of another function. The result is called a composite
function and we write f(g(x)) or fg(x) or fog(x) for g(x) followed by f(x).

Reversing the effect of a function f(x) is done by applying an inverse function, f~'(x). The
general method of finding an inverse function is:

1. Start with y = f(x).

2. Rearrange to get x in terms of y.

3. Replace each occurrence of y with an x.

Inverse functions have the following important properties:

— the graph of an inverse function is the reflection in the line y = x of the graph of the original
function

- the domain of the inverse function is the range of the original function, and the range of the
inverse function is the domain of the original function

- the inverse function and the original function cancel each other out to give the identity

function: f(f’1 (x)) =f! (f(x)) =X

© Cambridge University Press 2012.
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ax +2, the graph is a hyperbola with the following

« For rational functions of the form f(x)=
properties:

d
vertical asymptote x = ——
¢

. a
horizontal asymptote y = —
c

b
x-intercept at x = ——
a

y-intercept at y = S

« A special case of a rational function is a reciprocal function, f{x)=—. This is an example of a
self-inverse function. *

Introductory problem revisited

Think of any number. Add on 3. Double your answer. Take away 6. Divide by the
number you first thought of. Is your answer always prime? Why?

We can write the actions on the number as a function:

f(x)zz(x+3)—6

X
In most cases this expression simplifies to give 2, which is a prime number. However, we now
know that a function is more than just a rule; it also needs a domain. The domain for this
function must exclude zero, so the function produces a prime number for any input other
than zero.

)
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Mixed examination practice 4

Short questions
I8 If f(x)=x2>+1,find f{2x—1). [3 marks]
(L Riey f2x-1)

If f(x)=x+2 and g(x)=x solve the equation fg(x)= gf(x). [5 marks]

If f(x)=e?, evaluate f'(3). [3 marks]
. . 4x—3
(a) Write down the equations of all asymptotes of the graph of y = —
-Xx
(b) Find the inverse function of f (x) = 4: — 3. [6 marks]
-Xx
Find the inverse of the following functions.
(a) f(x) =log,(x+3), x>-3
(b) f(x) =3er ! [4 marks]
B

A is part of the graph of y=x c
B is part of the graph of y =2~ /
C s the reflection of graph B in line A ) @

Write down:

a The diagram shows three graphs. / A

(a) the equation of C in the form y= f(x)

(b) the coordinates of the point where C cuts the
X-axis. [5 marks]

The function fis given by f(x)=x?>-6x+10 for x>3.
(a) Write f(x) in the form (x - p)2 +q.
(b) Find the inverse function f~! (x)
(c) State the domain of f~'(x). [6 marks]

i~ 3—x
B The functi is defined b =" x#-1
@ a e function f(x) is defined by f(x) 1 X

(a) Find the range of f.
(b) Sketch the graph of y = f(x).

(c) Find the inverse function of f in the form f~(x)= axtb ,
and state its domain and range. cx+d [11 marks]
110 Topic 2: Functions and equations © Cambridge University Press 2012.
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a Let h(x)=x>—6x+2 for x> 3.
(a) Write h(x) in the form (x— p)2 +q.
(b) Hence or otherwise, find the range of h(x).

(c) Find the inverse function h~'{(x). [7 marks]

The functions f(x) and g(x) are given by f(x)= Jx—-2 and
g(x)=x?+x. The function (fog)(x) is defined for x € R except on the
interval Ja,b| .

(a) Calculate the value of a and of b.

(b) Find the range of fog. [7 marks]
(© IB Organization 2002)

Long questions
1. Let f(x)=x*+1,x23 and g(x)=5-x.

Evaluate f(3).

Find and simplify an expression for gf(x).

State the geometric relationship between the graphs of y = f(x) and
y=f"x).

(i) Find an expression for f~'(x).
(ii) Find the range of f~'(x).
(iii) Find the domain of f~'(x).

Solve the equation f(x) =g(3x). [10 marks]

2. Define f(x)=2x+1 and g(x)zx—-l_?, x#1.

Find and simplify
(i) f(7) (ii) the range of f(x) (iii) f(z)
(iv) fg(x) V) ff(x)
Explain why gf(x) does not exist.
() Find an expression for g7'(x).
(ii) State the geometric relationship between the graphs of y = g(x)

and y =g '(x).
(iii) State the domain of g '(x).
(iv) State the range of g '(x). [9 marks]
© Cambridge University Press 2012. 4 The theory of functions 111
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% 3. The functions f and g are defined over the domain of all real numbers by
fx)=x*+4x+9
glx)=e"
r Write f(x) in the form f(x)=(x+p) +q.
. Hence sketch the graph of y = x? + 4x + 9, labelling carefully all axis
intercepts and the coordinates of the turning point.
State the range of f(x) and of g{x).
)] Hence or otherwise, find the range of h(x) =e2 +4e*+9. [10 marks]
a
; 4. Youare given that (2x+3)(4—y)=12 for x,y e R.
!
' L - . ax+b
Write y in terms of x, giving your answer in the form y = —
cx
() Sketch the graph of y against x.
i 8x
Let =2x+k and h(x)= .
. et g(x)=2x+k and h(x) i3
Find h(g(x)).
) Write down the equations of the asymptotes of the graph of y = h(g(x)).
Show that when k = —%, h( g (x)) is a self-inverse function.  [17 marks]
|
)
/
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Transformations | '::i.‘.".‘;‘:.:?"“*”°“.

Of g ra p hS o funcnons affect their

graphs

® how to sketch

complicated functions
Introductory problem - by considering them
as transformations of
simpler functions.

Sketch the graph of y =log (x*— 6x + 9) without using a
calculator.

You have met various transformations which can be applied to

two-dimensional shapes: translations, enlargements, reflections

and rotations. In this chapter you will learn how translations,

stretches and reflections of a graph relate to changing parts of its o
_ equation. |

Self-Discovery Worksheet 2 ‘Changing functions and their
graphs’ on the CD-ROM guides you in discovering these rules

L

for yourself.
Translations | |
Compare these graphs of two functions which \ / _
differ only by a constant: \\ \ / / )
y = x2 - X+ 1 \ / :
y=x2—x-2 3
When the x-coordinates on the two graphs are the same (where \\ / 1'.'
x = x) the y-coordinates differ by 3 (y = y + 3). We can interpret
this as meaning that at the same x-coordinate, the blue graph is z J
three units above the red graph - it has been translated vertically.
KEY POINT 5.1
The graph of y = f(x)+c is the graph of y = f(x) moved
up by c units. If ¢ is negative, the graph is moved down.
4 © Cambridge University Press 2012. . 5 Transformations of graphs 113 |
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It is common to use vector notation to describe translations.

Vector notation is
explained in more ]> A translation by ¢ units up is described by ( ] .
c

detail in chapter 11.
In this next case, the blue graph is obtained from the red

y graph upon replacing x by x — 3 in the function.

Vool
VN y ?
A\ A Y= (o= 3f —(x-3)-2

Here, when x = x there is nothing obvious we can
\ \ |/ / say about the relationship between y and y. However,
\ \ / / note that a way of getting y = y is to have x =x — 3 or,
equivalently, x = x + 3. We can interpret this as meaning
“  that the two graphs are at the same height when the blue
graph is three units to the right of the red graph - it has
been translated horizontally.

N KEY POINT 5.2
. The graph y = f(x+d) is the same as the graph of
i3 y= f(x) moved left by d units. If d is negative, the graph is

moved right.

In vector notation, a translation to the left by d units is

—d
itt .
written 0
f Worked example 5.1

Y. The graph of y = x*+2x is translated 5 units to the left. Find the equation of the resulting
- graph in the form y=ax?+bx+c.
1
()
Relate the transformation to function ® If £(x) = X2 + 2x, then the new graph is y = f(x +5).
notation.
() <
Replace all occurrences of x by (x + 5)° y=(x+5)" +2(x+5) \_
in the expression for f(x). — X2 1 12x+ 35 J
s e e
\_ .
i1
Y

1 4 i;I'ic 2: ‘Funct:i?ns.qu equations o AN © Cam!ori_d_g University Press 2012.
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. Exercise 5A

)
\
1. Given the graph of y= f(x), sketch the graph of the é73
following functions, indicating the positions of the 6
minimum and maximum points. Z 3.3)
. _ sy 3 ‘
@ @ y=f(x)+3 () y=f(x)+5 = fe e TS
®) O y=fx)-7 (i) y=f(x)-05 TN R
© 0) y=flx+2) (i) y=f(x+4) FH R S nmmam
(d (i) y=f(x-1.5) (i) y= f(x-2) :i
-5
2. Find the equation of the graph after the given —6
transformation is applied. :g

(@) (i) y=3x? after a translation of 3 units vertically up
(ii) y =9 after a translation of 7 units vertically down
(b) (i) y=7x*-3x+6 after a translation of 2 units down
(ii) y =8x?—7x+1 after a translation of 5 units up
(c) (i) y=4x? after a translation of 5 units to the right
(ii) y=7x? after a translation of 3 units to the left
(d) (i) y=3x*—-5x>+4 after a translation of 4 units to the left

(ii) y=x*+6x+2 after a translation of 3 units to the right

3. Find the required translations.

(a) (i) Transforming the graph of y =x?+3x+7 to the graph
of y=x?+3x+2

(ii) Transforming the graph of y = x*>—5x to the graph of
y=x>-5x—4
(b) (i) Transforming the graph of y =x>+2x+7 to the graph
of y=(x+1) +2(x+1)+7
(ii) Transforming the graph of y = x*>+5x—2 to the graph
of y=(x+5) +5(x+5)-2
(¢) (i) Transforming the graph of y =e*+x? to the graph of
y=et+{x— 4y’
(ii) Transforming the graph of y =log(3x)— Jax to the
graph of y=log (3(x - 5)) —J4(x-5)
(d) (i) Transforming the graph of y =1In(4x) to the graph of
y=In{4x+12)

(ii) Transforming the graph of y =+2x+1 to the graph of
y=~2x-3

A T © Cqmbr-_idg.e University Press 291_2_. i — L &Iransip_rmdtj?ns oigraphs 115
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Stretches

With these two graphs, one function is 3 times the other.

y=x>—x-2

y=3(x*-x-2)

When the x-coordinates on the two graphs are the same (x = x),
the y-coordinates of the blue graph are three times larger

(y = 3y). We can interpret this as meaning that at the same
x-coordinate, the blue graph is three times further from the
x-axis than the red graph - it has been stretched vertically.

KEY POINT 5.3

The graph of y = pf(x), with p> 0, is the same as the
graph of y= f(x) stretched vertically relative to the
x-axis (away from) with scale factor p. If 0 < p < 1, then
y =f(x) is compressed vertically relative to the x-axis
(towards). If p < 0, you have a negative scale factor (—p)
and it might be easier to think of the transformation as
a stretch by scale factor p followed by a reflection in the
x-axis.

These graphs illustrate what happens when you replace x in the
function by 2x.

y=x*=—x-2
y=(2x)*—(2x)-2

When x = x, there is nothing obvious we can say about the
relationship between y and y. But note that a way of getting y = y

x
is to have x = 2x or, equivalently, x = 5 We can interpret this

as meaning that the two graphs are at the same height when the
distance from the y-axis of the blue graph is half the distance of
the red graph - it has been stretched horizontally.

=
116 Topic 2: Functions and equations JANbd © Cambridge University Press 2012.
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KEY POINT 5.4

The graph of y = f(qx) is the same as the graph of y = f(x) stretched horizontally relative to the
y-axis by scale factor l This can be considered a compression relative to the y-axis (towards)
when g > 0. When 0 < g < 1, it is considered a stretch relative to the y-axis (away from) and

1
when g < 0 you have a negative scale factor (——) and it is easier to think of the transformation

1
as a stretch/compression by scale factor — followed by a reflection in the y-axis.

Although we have used the terms ‘stretched’ and ‘compressed,
both transformations are generally referred to as ‘stretches.

Worked example 5.2

Describe a transformation which transforms the graph of y =Inx —1 to the graph of

y=Inx*—-4.
»

d
Try to relate the two equations using Let f(x)=Inx—1. ¢
function notation. Then i
None of the transformations we know nx* —4=4lnx — 4 ({
involves raising x to a power, so first think of = 4(Inx 1) p
a different way to write |n x*. — 4F(x) ‘rh‘
{
{
Relate the function notation to the ** It is a vertical stretch with scale factor 4.
transformation. i
b
\_ .
. Exercise 5B i
1. Given the graph of y = f(x), sketch the graph of the 7
following functions, indicating the positions of the 5
minimum and maximum points. 1 v~ flo)
3
(@) (G) y=3f(x) (i) y=5f(x) ) CBINE
1
~
(b) (i) y= —f(x) (i) y= —f(x) 8765 1-0nNg 1 *
4 2 A
(©) () y=f@x) (i) y=f(6x) N
. 2x .. 5x -5
@ @) y=f (—) (ii) y=f —] -0
3 6 ’
-8

J
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2. Find the equation of the graph after the given

transformation is applied.
(a) (i) y=3x? after a vertical stretch 7 relative to the x-axis
(ii) y=9x? after a vertical stretch 2 relative to the x-axis

(b) (i) y=7x%—3x+6after a vertical stretch factor 1 relative to
the x-axis 3

(ii) y =8x* —7x+1after a vertical stretch factor 4 relative to
the x-axis >

(c) (i) y=4x? after a horizontal stretch factor 2 relative to the
y-axis
(ii) y =7x?after a horizontal stretch factor 5 relative to the
y-axis
1
(d) (i) y=3x>—5x*+4 after a horizontal stretch factor 7

relative to the y-axis

2
(ii) y =x*+6x+2 after a horizontal stretch factor — relative
to the y-axis 3

. Describe the following stretches.

(a) (i) Transforming the graph of y =x?+3x+7 to the graph
of y=4x>+12x+28
(ii) Transforming the graph of y = x*>—5x to the graph of
y=6x>—-30x
(b) (i) Transforming the graph of y =x?+2x+7 to the graph
of y= (Sox)2 +2(3x)+7
(ii) Transforming the graph of y = x?+5x—2 to the graph
of y=(4x)" +5(4x)-2
(¢) (i) Transforming the graph of y =e*+x? to the graph of

2
x
+ J—
)
(i) Transforming the graph of y = log(3x) —V4x to the

3x 4x
hof y=1 — —‘f—
graph or y 08(5) 5

(d) (i) Transforming the graph of y =1In(4x) to the graph of
y=1In(12x)

~ R

y=¢

(ii) Transforming the graph of y =+/2x+1 to the graph of
y=+x+1
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Reflections

Compare these two graphs and their equations:
y=x?-x-2
y=—(x*-x-2)
When the x-coordinates on the two graphs are the same
(x = x), the y-coordinates are negatives of each other
(y =—y). We can interpret this as meaning that at the same
x-coordinate, the blue graph is the same vertical distance from

the x-axis as the red graph but on the opposite side of the
axis - it has been reflected vertically.

KEY POINT 5.5

The graph of y = —f(x) is the same as the graph of y = f(x)
reflected in the x-axis.

Next, see what happens when we replace x by —x in the
equations:

y=x*-x-2
y=(=x) = (=x)-2
When x = x, there is nothing obvious we can say about the
relationship between y and y. But note that for x = — x we
have y = y. This means that the heights of the two graphs are
the same when the blue graph is at the same position relative

to the y-axis as the red graph, but on the opposite side of the
y-axis - it has been reflected horizontally.

KEY POINT 5.6

The graph of y = f(—x) is the same as the graph of
y = f(x) reflected in the y-axis.

PR .Cqmbj_i.gg.e Unirj.ty Pr§s§ 2(_)2_. 7 IR VT B
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. Exercise 5C

[ ™

n 5]

The graph of y = f(x) has a single maximum point with coordinates (4,—3). Find the
coordinates of the maximum point on the graph of y = f(-x) .

Relate the function notation to an appropriate ®

The transformation taking y = f(x) to

transformation. y = f(—x) is reflection in the y-axis.

. . . H ..
Reflection in the y-axis leaves y-coordinates
unchanged but switches the sign of
x-coordinates.

L

The maximum point is (—4,—3).

f.._p—-_r»___\\.‘p#" J r*ﬂ%vﬁj

«
<
|

( Worked example 5.3

Ane

\
A

4

.

maximum points.
y - f(2)
: ORNE (a) )’:_f(x)
> T - (b) y=f(=x)

2. Find the equation of the graph after the given
transformation is applied.

} (a) (i) y=3x? after reflection in the x-axis

(ii) y=9x? after reflection in the x-axis

(b) (i) y=7x*>-3x+6 after reflection in the x-axis

(ii) y=8x>—7x+1 after reflection in the x-axis

(c) (i) y=4x? after reflection in the y-axis

(ii) y=7x> after reflection in the y-axis

(d) (i) y=3x’—-5x*+4 after reflection in the y-axis

(ii) y=x>+6x

3. Describe the followi

+2 after reflection in the y-axis

ng transformations

1. Given the graph of y = f(x), sketch the graph of the following
' functions, indicating the positions of the minimum and

(a) (i) Transforming the graph of y =x?+3x+7 to the graph
of y=—x*-3x-7

(ii) Transforming the graph of y = x* —5x to the graph of

y=5x—-x>

(b) (i) Transforming the graph of y =x?+2x+7 to the graph
of y=x>-2x+7

(ii) Transforming the graph of y = x> —5x—2 to the graph
of y=x*+5x-2
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(c) (i) Transforming the graph of y =e* + x> to the graph of
y=e *+x?
(ii) Transforming the graph of y =log(3x)—4x to the
graph of y= Jax —log(3x)
(d) (i) Transforming the graph of y =In(4x) to the graph of

y = In(—4x)
(ii) Transforming the graph of y =+/2x—1 to the graph of
y=~+-1-2x

Consecutive transformations

In this section we look at what happens when we apply two
transformations in succession.

If the point (1, 3) is translated two units up and then reflected
in the x-axis, there have been two vertical transformations,
and the new point is (1, -5). -1

If (1, 3) is first reflected in the x-axis and then translated two
units up, there have been two vertical transformations, and the |
new point is (1, —1). -1

However, if the two transformations were a translation by 5
two units up and a reflection in the y-axis, there has been one 4
vertical transformation and one horizontal transformation,
and the new point will be (-1, 5) regardless of the order in
which the transformations were applied.

-3 -2 -1 1 2 3x
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In advanced
mathematics, algebra
involves much more
than using letters to represent
numbers. Unknowns can be
transformations and many
other things besides
numbers. As you can see in
this section, the rules for
transformations are different
from the rules for numbers,
but there are certain
similarities too. The study of
this more general form of
algebra is called group
theory, and it has many
applications, ranging from
particle physics to painting
polyhedra.

EXAM HINT
S

You may find it helpful
to remember that i
when resolving vertic
iransformations We
follow the norma
order of operafions:
while hor'\zgn’ro\qre
formations ‘
trrc(:sr‘os\ved in the opposite

order.

122 Topic 2: Functions qnd equations
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KEY POINT 5.7

When two vertical transformations or two horizontal
transformations are combined, the order in which they are
applied affects the outcome.

When one vertical and one horizontal transformation are
combined, the outcome does not depend on the order.

There is a very important rule to remember when resolving

horizontal or vertical transformations:

o vertical transformations follow the ‘normal order of
operations as applied to arithmetic

« horizontal transformations are resolved in the opposite order
to the ‘normal’ order of operations.

This is demonstrated below:

First, let us consider how we could combine two vertical
transformations to transform the graph of y = f(x) into the
graph of

y=pf(x)+c

We can achieve this by first multiplying f(x) by p and then
adding on ¢, so this process is composed of a stretch (and/or
reflection if p < 0) followed by a translation.

0
Translate ((’)

add ¢ to function

Stretch Factor p

f(z)

pf(x)

pf(x) +c

multiply function by p

This follows the order of operations as you would expect.

Next, think about how we could combine two horizontal
transformations to transform the graph of y = f(x) into the
graph of

y=flgx+d)

We can achieve this by first replacing x with x+d and then
replacing all occurrences of x by gx, so this process consists of a
translation followed by a stretch (and/or reflection if g < 0).

—d
Translat
ranslate <0>

f(@) f@+d)
Replace x with x + d

Stretch Factor ¢

flgz +d)

Replace x with qx

Following the normal order of operations, you would expect to

resolve ‘gx’ before ‘+d’ but you resolve the transformation in the
opposite order.

The first question in Exercise 5D asks you what happens if you
apply these transformations in the reverse order.

© Cambridge University Press 20°
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3
Worked example 5.4 [

Given the graph of y = f(x), sketch the corresponding graph of y=3-2f(2x +1).

y
P ey A
¢ [
AN/ €T
..
Break down the changes to the (2x + 1) is two horizontal transformations
function into components. (changes x); 3 — 2f (2x + 1) is two vertical

transformations (changes y)
Changing x: add 1, then multiply x by 2
Changing y: multiply by -2, then add 3

A A e

Relate each component to a transformation
of the graph.

Replace x with x +1;

change y =f(x) to y = f(x +1).

-1
Horizontal translation by (O]

=y
~——_

Replace x with 2x; & Horizontal stretch with scale factor il
change y =f(x+1) to y =f(2x +1). . 2

~
P~

r/A‘HLA'tHP‘MM‘h A ‘-‘""h““*‘—‘“""‘\—‘-. a A -“"‘\_A"__»._. LS

1 S ——
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continued . ..

Multiply RHS by —2;°
change y = f(2x +1) to y = -2f(2x + ). with scale factor 2
Y

Reflection in the x-axis and vertical stretch f
d
§

ft
~
=
o

)
=
|

A

Add 3 to RHS,‘°. Vertical translation by [O]

change y ==2f(2x + 1) to y =3-2f(2x +1). y

y|=[3+2 f(2at+11)

1%

s
o ‘Mh&w%‘ﬂ*hk&‘-‘\-vu

VW e WO W A inad

. Exercise 5D

(a) The graph of y= f(x) is transformed by applying first a
vertical translation by ¢ units up and then a vertical stretch
with factor p relative to the x-axis. What is the equation of
the resulting graph?

(b) The graph of y = f(x) is transformed by applying first a
horizontal stretch with factor g relative to the y-axis, then
a horizontal translation by d units to the left. What is the
equation of the resulting graph?

4 Topic Zqunctionsqu equations R © Cam!o idge University Press 2012.
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2. The graphsof y= f(x) and y = g(x) are given.

6 0
Sketch the graphs of the following. ;
. 1 1(z) ;
(@) () 2f(x)-1 (ii) 5g(x)+3 ‘ :
(b) () 4- f(x) (i) 2-2¢(x) T
1-g(x 2
© @) 3(f(x)-2) (i) % >
-5
@ () f g— 1) (i) g(2x+3) =
4—x x-3 |
(e) () f ) (ii) g(—] o1
5 2 >
\ ; glir)
3. If f(x)=x? express each of the following functions as \ 7R
af (x) +b and hence describe the transformation(s) R ;
mapping f(x) to the given function. \ . /L;
(@) () k{x)=2x2-6  (ii) k(x)=5x>+4 (L2507,
(b) () h(x) =5-3x? (ii) h(x) =4 —8x? 0

If f(x)=2x?—4, write down the function g(x) which gives

the graph of f(x) after:

(@) (1)

(ii)

(b) (i)

(ii)

(c) (i)
(ii)

- © Cambridge University Press 2012.

0
translation 5 followed by a vertical stretch of scale
factor 3

0
translation (6]’ followed by a vertical stretch of scale

factor 1

vertical stretch of scale factor 1, followed by a

0
translation 6}

vertical stretch of scale factor Z, followed by a

10

0
translation ]

reflection through the horizontal axis

reflection through the horizontal axis followed by a

0
translation (2]

o N L L &Iraniflgrﬂtnso graphs
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(d) (i) reflection through the horizontal axis and vertical stretch

0
of scale factor 1, followed by a translation (3}

(ii) reflection through the horizontal axis followed by a

0
translation ( J followed by a vertical stretch, scale

factor 2

5. If f(x)= x? express each of the following functions as
f (ax + b) and hence describe the transformation(s)
mapping f(x) to the given function.

(@) () g(x)=x*+2x+1 (ii) g(x)=xz—6x+9
b) (i) h(x)=4x> (ii) h(x) "9
(c) () k(x)=4x>+8x+4 (i) k(x)=9x2—6x+1

6. If f(x)=2x2—4, write down the function g(x) which
gives the graph of f(x) after:

1
(a) (i) translation 0 followed by a horizontal stretch of scale

factor 1

(ii) translation ( 0] , followed by a horizontal stretch of

scale factor 1
(b) (i) horizontal stretch of scale factor 1, followed by a

—4
translation ( OJ

(ii) horizontal stretch of scale factor 2, followed by a

1
translation (0}

-3
(¢) (i) translation ( 0] followed by a reflection through the

vertical axis

(ii) reflection through the vertical axis followed by a

. -3
translation ( O)

6 pic %functionsqd equations A’ ‘ A© Com!or! Uni\fersityl,?;"_es§22. m—
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7. For each of the following functions f(x) and g(x), express
g(x) in the form a: f(x+b)+ c for some values a,b and c,
and hence describe a sequence of horizontal and vertical
transformations which map f(x) to g(x).

(@) (i) f(x)—x2 g{x)=2x>+4x
(i) f(x)=x% g(x)=3x>—24x+38
() () flx)=x+3, g(x)=x>—6x+8
(i) f(x)=x>-2, g(x)=2+8x—4x>

) 1t f(x)=2*+x, give in simplest terms the formula for
h(x), which is obtained from transforming f(x) by the
following sequence of transformations:

« vertical stretch, scale factor 8 relative to y =0

1
o translation by (4]

« horizontal stretch, scale factor 1 relative tox =0  [6 marks]

a Sketch the following graphs. In each case, indicate clearly
the positions of the vertical asymptote and the x-intercept.

(a) y=Inx
(b) y=3In(x+2)
() y=In(2x-1) [6 marks]

(a) The graph of the function f(x)=ax +b is transformed
by the following sequence:

1
« translation by (2}
o reflectionin y=0
o horizontal stretch, scale factor 1 relative tox =0

The resultant function is g(x)=4—15x. Find a and b.

' © Cambridge University Press 2012. .. | . &Irans‘flgrmdti ns of graphs 127




(b) The graph of the function f(x)=ax?+bx+c is
transformed by the following sequence:

o reflectionin x=0

-1
« translation by ( 3]

« horizontal stretch, scale factor 2 relative to y = 0

The resultant function is g(x)=4x>+ax—6. Find a, b
and c. [10 marks]

Summary

y=f(x)+c

Transformation of y = f(x)

 Here are the most important transformations that you need to know:

‘ Transformation of the graph

0
Translation ( ]
c

L |y=faa)

—d
Translation( OJ

Vertical stretch, scale factor p: when p > 0 stretches away from

y = pf(x) the x-axis; when 0 < p < 1 stretches towards x-axis; when p < 0
stretch by factor p then reflect in x-axis.
Horizontal stretch, scale factor l: when g > 0 stretches towards
q
y= f(gx) the y-axis; when 0 < g < 1 stretches away from the y-axis; when
Ts q < 0 stretch by — 1 then reflect in the y-axis.
' q
- y=—f(x) Reflection in the x-axis.
]
ﬂ..
y=f(~x) Reflection in the y-axis.

« When combining two or more transformations,

— when two horizontal transformations, or two vertical transformations, are combined, the
order in which they are applied will change the outcome

_z — when one horizontal and one vertical transformation are combined, the outcome will be the
same regardless of the order in which the transformations were applied.

128 Topic 2: Functions and equations
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Introductory problem revisited

Sketch the graph of y =log(x? —6x+9) without using a calculator.

First, simplify the equation algebraically:
y=log(x*—6x+09)

=log(x-3)’
=2log(x—3)
We can relate this to a graph we know:
y=f(x)=logx
Y
)
(10,1)
— @
T

The required graph is y =2 f(x —3), which is obtained from the graph of y = f(x) by

3
applying a vertical stretch with scale factor 2 and a translation (O]

Yy
A o
z=3

.© Ca _ ridge University o _ (A ransformations of graph




Mixed examination practice 5

Short questions y

The graph of y= f(x) is shown.
Sketch on separate diagrams the graphs of

(@) y=3f(x-2) (5,2)
y=31 f(z)

Indicate clearly the positions of any x-intercepts

and asymptotes. [6 marks]

|
|
I
I
I
I
) f@]—z - E
I
I
I
|

The graph of y=x*—1 is transformed by applying a translation with

2
vector (0) followed by a vertical stretch with scale factor 2. Find the

equation of the resulting graph in the form y=ax®+bx*+cx+d. [4 marks]
y
The graph of y= f(x) is shown. 6
(a) Sketch the graph of y= f(x—1)+2. ;
(b) State the coordinates of the minimum points |\ 2 /
on y=f(x-1)+2. [5 marks] -\ U /
RO Ty |
Find two transformations whose composition \\ 72\ /
transforms the graph of y =(x— 1)2 to the graph / Ci \
of y=3(x+2)2. [4 marks] .
—6
* (a) Describe two transformations whose composition transforms the
graph of y = f(x) to the graph of y = 3f(§)
(b) Sketch the graph of y = 3ln(§).
(c) Sketch the graph of y = 3ln(§ + 1], marking
clearly the positions of any asymptotes and
x-intercepts. [7 marks]
130 Topic 2: Functions and equations © Cambridge University Press 2012.
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a The diagram on the right shows a part of the graph
of y= f(x).

Sketch the graph of y = f(3x—2). [4 marks] y=2 [_&
y=1[()
Long questions (2,0)/

1. Describe two transformations which /

transform the graph of y = x? to the graph
of y=3x>—-12x+12.

Describe two transformations which
transform the graph of y = x?+6x—1 to the graph of y = x2.

Hence describe a sequence of transformations which transform the graph
of y=x?+6x—1 to the graph of y=3x?—-12x+12. [10 marks]

B 2. Describe a transformation which transforms the graph of y = f(x) to
the graph of y = f(x+2).

Sketch on the same diagram the graphs of

(i) y= ln(x+2) (i) y=In(x*+4x+4)
Mark clearly any asymptotes and x-intercepts on your sketches.
The graph of the function y = g(x) has Y

been translated and then reflected in the 7
x-axis to produce the graph of y=h(x).

~—

(i) State the translation vector.

(i) If g(x)=x*—-2x+5, find =9 W=t .
constants a,b,c,d such that I 2:12 i ?
h(x)=ax®+bx*+cx+d. [12 marks] [ %i\

_‘l’ \
-0 \
3x-5 —6
3. Let f(x)=> B
x

-2 -8
Write down the equation of the horizontal
asymptote of the graph of y = f(x).

Find the value of constants p and q such that f(x)=p+ 4

x—=2
Hence describe a single transformation which transforms the graph of
y= 1 to the graph of y= f(x).
X
Find an expression for f~'(x) and state its domain.

Describe the transformation which transforms the graph
of y= f(x) tothe graph of y = f'(x). [11 marks]

© Cambridge University Press 2012. 5 Transformations of graphs 131
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In this chapter you
will learn:

* how to describe
sequences
mathematically

* a way to describe
sums of sequences

® about sequences with
a constant difference
between terms

e about finite sums of
sequences with a
constant difference
between terms

* about sequences
with a constant ratio
between terms

® about finite sums of
sequences with a
constant ratio between
terms

¢ about infinite sums

of sequences with a
constant ratio between
terms

* how to apply
sequences to real-life
problems.

e

132 Topic 1: Algebra

Sequences
and series

Introductory problem

A mortgage of $100 000 has a fixed rate of 5% compound
interest. It needs to be paid off in 25 years by fixed annual
instalments. Interest is debited at the end of each year, just
before the payment is made. How much should be paid
each year?

t

If you drop a ball, it will bounce a little lower each time it hits
the ground. The heights that the ball reaches after each bounce
form a sequence. Although the study of sequences may seem
to be just about abstract number patterns, it actually has a
remarkable number of applications in the real world - from
calculating mortgages to estimating harvests on farms.

General sequences

A sequence is a list of numbers in a specified order. Examples
include:

1,3,57,9,11, ..
1,4,9, 16, 25, ...
100, 50, 25, 12.5, ...

© Cambridge University Press 2012.
Not for printing, sharing or distribution
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The numbers in a sequence are called terms; so in the first
sequence above, the first term is 1, the second term is 3, and
so on. To study sequences, it is useful to have some special
notation to describe them.

KEY POINT 6.1

u, denotes the value of the nth term of a sequence.

In the first sequence above, we would write 4, =1, u, =3,
u; =9, etc.

We are mainly interested in sequences with well-defined
mathematical rules. There are two types of rules for defining a
sequence: recursive rules and deductive rules.

A recursive rule links new terms to previous terms in the
sequence. For example, if each term is three times the previous
term, we would write u,,, = 3u,.

Worked example 6.1

A sequence is defined by u,,,; = u, +u,_, with u; =1 and u, = 1. What is the fifth term of this
sequence?
- . :
The sequence is defined by a recursive Us = Uy + U i
rule, so we have to work our way up to u;. 1 {
We are given v, and u,. _5 ‘
To find u, set n=2 in the inductive formula. /
{
IS |
To find u, setn=3. Uy = Us + Uy d
=2+1 y
= {
§
¢
To find us set n=4. Us = Uy +Usg p
=542 \
-5 )
N ) PSSV

2

While u, is @
conventiond
symbol for a
sequence, there \
is nothing spectd
about the letters
used. We coul
also call @ )
vence t, Of Gh-
'STT% jmportant thing
to remember 1S
that the subscrip!
(n) tells us \{«here
the term is in fhe
sequence, An tbe;‘
\etter together wit
the subscript W
represems the value

of that term.

EXAM HINT
e —

@J.Cthr_igigg University Press 2012.
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You may recognise the sequence in Worked example 6.1 as the famous ‘Fibonacci
sequence’, based on a model Leonardo Fibonacci proposed for rabbit populations. This g
sequence has arisen in many applications, from the arrangement of seeds in pine cones

to a proof of the infinity of prime numbers. There is also a beautiful link to a special number

, 1+/5
5

called the ‘golden ratio’,

S

134 Topic 1: Algebra

A deductive rule links the value of the term to where it is in the
sequence. For example, if each term is the square of its position
in the sequence, we would write u, = n?.

EXAM HINT
There are several alternative names for deductive and recursive rules. A recursive rule may

also be referred to as a ‘term-to-term rule’, ‘recurrence relation’ or ‘inductive rule’. A deductive
rule may also be called a ‘position-to-term rule’, ‘nth term rule” or simply ‘formula’.

Worked example 6.2

A sequence is defined by u, =2n—1.
(a) Find the fourth term of this sequence.
(b) Find and simplify an expression for u,., —u,,.
§ y
With a deductive rule, we can jump straight to the ® (3) u, =2xX4 -1 4
fourth term by setting n = 4 in the formula. =7 ;
> f
To getu,,;, put n + lin place of nin the formula.’ (b) Upy = 2(n+1) =1 ;
uw—un=(2(n+1)—1)—(2n—1) ‘
=2n+2-1-2n+1 4'
s ULV

(You might be intersted to know that the answer to part (b) is
the difference between each term in the sequence.)

1. Write out the first five terms of the following inductively defined
sequences.

(a) (1) u,y=u,+5u=31 () u,,=u,—-3.8 u,=10
(b) (1) U = 3un + l’ U = 0 (11) Uy = 9‘.’,!,1 - 10’ U = 1
(C) (1) un+2 = un+1 Xun’ ul = 2,!,!2 = 3

© Comblji.dg.e Uni}\:er§ity Pre:




(i) w0y =t +u

w
b U =2,u,=1 (A

(d) (1) un+2:un+5’ u1:3’u2:4

(i) wu,,=2u,+1, u,=-3,u,=3

(e () wuyn=u,+4 u,=12 (i) wu,, =u,—2,u=3

2. Write out the first five terms of the following deductively

defined sequences. .
(a) (i) u,=3n+2 (i) wu,=1.51n-6 P
() (i) u,=n*-1 (i) wu,=5n? .
© @) u =3 (i) u, =8%(05) g
(d) G) u,=n" (i) u, =sin(90n°)
3. Give a possible inductive definition for each of the _

following sequences. In science we may

' - state an observed
(@) () 7,10,13,16,... (i) 1,0.2,-0.6,~1.4,... Sl @B e
(b) () 3,6,12,24,... (i) 12,18,27,40.5,... there is no

contradictory evidence, but

(C) (i) 1,3)6,10)... (ii) 1,2,6,24,... fhiS is no', ',he case in
mathematics. For instance,
4. Give a deductive definition for each of the following sequences. ~ given the first four temt]as of a
_ N sequence, we cannot be sure
(a) (1) 2,4,6,8,... (i) 1,3,5,7,... that the sequence il
(b) (1) 2,4,8,16,... (ii) 5,25,125,625,... continue on for ever with the
© () 1,4,916,... (i) 18,27.64,... same pattern. Nevertheless,
T TeE a principle in philosophy
@ () l’%’i’i_“ (ii) l,i,é’l’_“ called ‘Occam’s Razor’
2345 24816 suggests that the simplest

answer is often the right one.

The sequence u, is defined by u, =n2".

(a) Write down u,.

(b) Find and simplify an expression for M. [4 marks]

n

a A sequence {u,} is defined by u,=1, u, =2,
U, =3u, - 2u, , whereneZ.

(a) Find u,, u, and u,.

(b) (i) Using the results in part (a), suggest an expression for
u, in terms of n. 18

(ii) Verify that your answer to part (b)(i) satisfies the
equation u,,, =2(3u, - 2u,,_,). [6 marks]

[ & & Wk - [
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@ Ceneral series and sigma notation

If 10% interest is paid on money in a bank account each year, the
amounts paid form a sequence. While it is good to know how
much interest is paid each year, you may be even more interested
in knowing how much interest will be paid in total over a certain
number of years. This is an example of a situation where we may
want to add up the terms of a sequence. The sum of a sequence
up to a certain point is called a series. We often use the symbol
S, to denote the sum of the first n terms of a sequence.

Worked example 6.3

The sum of consecutive odd numbers, starting from 1, forms a series. Let S, denote the sum of
the first n terms. List the first five terms of the sequence S, and suggest a rule for it.

4
Start by examining the first few terms. * S =1 d
5, =1+3=4 ;

L. S5 =1+23+5=19 d
i S,=1+3+5+7=16 {
a3 S, =1+3+5+7+9=25 5
() 1

Do we recognise these numbers? * It seems that S, =n? Pj

IR i T O S
\. e A - y
7

You will learn how

b [ ]>to prove this result]>

in section 6D.

EXAM HINT
kxR —

Do not be ‘
infimidated by this
comp\'\ccted-\ookmg
notation. \f. you
struggle with an
expression given
in sigma notation,
fry writing out theh
first few terms of the

series.

".-.'_: =

8136, Bopic 1: Algebra

iy L

To work with series mathematically, it is often too tedious to
specify adding up a defined sequence from a given start point to a
certain end point, or to write u; +u, + u; + u, +---+u,. The same
thing can be expressed in a shorter (although not necessarily
simpler) way by using sigma notation:

KEY POINT 6.2

This is the last value taken by r; where counting ends]

. r=n IT is a placeholder; it shows what changes with each new terml
Capital Greek]

sl Y} fr) = (1) + J(2) - fn)

‘add up’

r=1

IThis is the first value taken by r; where counting startsl

Note that although in Key point 6.2 the counting started at r =1,
this does not necessarily have to be the case: you can replace 1

o - k-
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by any other starting value. However, r always increases by 1
until it reaches the end value. If there is only one variable in the
expression being summed, it is acceptable to omit the ‘r="above
and below the sigma.

Worked example 6.4

Given that T, = 2 r?, find the value of T,.
2

Put the starting value, r= 2 info the expression being summed, r2.* T,=22+... y

We've not reached the end value 4, so putin r=3.° T,=224+3%+...

d

<

§

}

We've still not reached the end value, so putin r= 4. T, =22 + 32 + 42 ﬁ'
1

Now we have reached the end value and can proceed to*® T.=4+9+16

\

evaluate the sum. =29 ]

. ad

\ - ——b
In the example, both the letters n and r are unknowns, but they

are not the same type of unknown. If we replace r by any other
letter (except n), the sum will keep the same value. For example,

paa A e,

k=4 r=n k=n
T, = 2 k* =29; 2 r* and Z k* have exactly the same meaning.
k=2 r=2 k=2
Thus, r is called a ‘dummy variable. However, if we replace n
with anything else, the value of the expression may change; for

example, T, =13, T, =29.

Worked example 6.5

. .11 1 1 1. . .
Write the series 5 +—+ Z + E + g In sigma notation.

We must describe each term of the series using a dummy variable r. * Cereral e

)
P
§
What is the first value of r2* Starts from r=2 {
What is the final value of 2 Ends at r=6 f
.‘ & 1 :'\.
Express in sigma notation. * Series is 2; J
2
\§ mabs J’—““"‘H“MJJ
!
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@
- Exercise 6B

/

1. Evaluate the following expressions.

(a) () i?)r (ii) i(2r+1)

b &) XY@ -1 (i) Y L5
© @) 3 bla+1) ) Y pg

. Write the following expressions in sigma notation. Be aware

that in each case there is more than one correct answer.

(a) (i) 2+3+4+---+43 (i) 6+8+10+...+60
. 1 1 1 2 2 2
(b) ()

—t ==+t — (ii)) 24—4+—4-+—
4 8 16 128 39 243
(c) G) 14a+2la+28a+---+70a (ii) 0+1+20+30+---4+19°

O
! Arithmetic sequences
We now focus on a particular type of sequence — one where
there is a constant difference between consecutive terms. Such
sequences are called arithmetic sequences or arithmetic
progressions. The constant difference between consecutive
terms is called the common difference, usually denoted by d, so
arithmetic sequences obey the recursive rule
un+1 = un + d
This formula is not enough to fully define the sequence. There
are many different sequences with common difference 2, for
_ example 1,3,5,7,9,11,... and 106,108,110,112,... . To fully define
= the sequence we also need to specify the first term, u,. So the
1 second sequence above is defined by u; =106,d = 2.
Worked example 6.6
What is the fourth term of an arithmetic sequence with u, =300,d =-5?
- h ive rule to find the first f N ]
Use the recursive rule to tind the first four terms. u, =300 {
¢ u, =, —5=295 f
Us =u, —5=290 "l
1 U, =u, —5=285 4
N HJMM'#"JI_‘M.AM,“MJ
B\ ’ »
D <

:_38 Topic 1: Algebra
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In the above example it did not take long to find the first four
terms, but what if you had been asked to find the hundredth
term? To do this efficiently, we need to move from the inductive
definition of an arithmetic sequence to a deductive rule. Think
about how arithmetic sequences are built up:

U, =u,+d
Uy=u,+d=u,+d+d
u,=u,+d=u+d+d+d

and so on. To get to the nth term, we start at the first term and
add on the common difference n—1 times. This suggests the
following formula.

KEY POINT 6.3

u

1

Worked example 6.7

The fifth term of an arithmetic sequence is 7 and the eighth term is 16. What is the 100th term?

We need to find a deductive rule for u,, which we can do*® Us = Uy, +4d
once we know u; and d.
So let'’s write down the information given and relate it to

u; and d.

Write an expression for the 5th term in terms of v, and d.

=u+(n—1)d

We are told that us = 7 7=u+4d (1
Repeat for the 8th term. ¢ 16=u+74 (2)
() q
Solve this pair of equations simultaneously. * (2)-(1) gives
9=234
sd=3
and hence
u=-5

Write down the general term and use it o answer *® u,==5+(n-1)x3

pUTey ——
il ‘h\q‘—-‘_._...qw A ity ao A denaa A A, . A A

the question. Upo =—5+99x 3
=292 d
L PN, f“w»uwj
\_ .
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EXAM HINT

Many exam questions on this topic involve writing the
given information in the form of simultaneous equations
and then solving them.

Worked example 6.8

An arithmetic progression has first term 5 and common difference 7. What is the term number
corresponding to the value 3557
"ﬁ
()

The question is asking us to find n when v, = 355.° B85 =u; +(n—1)d t
Write this as an equation. =5+7(n—1) }
{

- i

Solve this equation. & 350=7(n-1) g

& bB0=n-1 )

. & n=51 1\
& S0 355 is the Blot term. )

L e Y «"’h““““'u*‘JJ

EXAM HINT

‘Arithmetic progression’ is just another way of saying
‘arithmetic sequence’. Make sure you are familiar with
these different expressions for the same thing.

1. Find the general formula for the arithmetic sequence that
satisfies the following conditions.

(a) (i) First term 9, common difference 3
(ii) First term 57, common difference 0.2
(b) (i) First term 12, common difference —1
(ii) First term 18, common difference —%
(c) (i) Firstterm 1, second term 4
(ii) First term 9, second term 19
(d) (i) First term 4, second term 0
(ii) Firstterm 27, second term 20
(e) (i) Third term 5, eighth term 60
(ii) Fifth term 8, eighth term 38
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2. How many terms are there in each of the following sequences?
(a) (i) 1,3,5,...,65 (i) 18,13,8,...,—122
(b) (i) First term 8, common difference 9, last term 899

(ii) First term 0, ninth term 16, last term 450

An arithmetic sequence has 5 and 13 as its first term and
second term, respectively.

(a) Write down, in terms of #, an expression for the nth term a,.

(b) Find the number of terms of the sequence which are less
than 400. [8 marks]

The 10th term of an arithmetic sequence is 61 and the 13th
term is 79. Find the value of the 20th term. [4 marks]

The 8th term of an arithmetic sequence is 74 and the 15th
term is 137. Which term has the value 227? [4 marks]

a The heights above ground of the rungs in a ladder form
an arithmetic sequence. The third rung is 70 cm above the
ground and the tenth rung is 210 cm above the ground. If
the top rung is 350 cm above the ground, how many rungs
does the ladder have? [5 marks]

The first four terms of an arithmetic sequence are 2, a - b,
2a+b + 7 and a - 3b, where a and b are constants.
Find a and b. [5 marks]

a A book starts at page 1 and is numbered on every page.
(a) Show that the first eleven pages contain thirteen digits.

(b) If the total number of digits used is 1260, how many pages
are in the book? [8 marks]

@) Arithmetic series

When you add up the terms of an arithmetic sequence, you get
an arithmetic series. There is a formula for the arithmetic series
of n terms. See the Fill-in proof 3 ‘Arithmetic series and the
story of Gauss’ on the CD-ROM if you are interested in how it is
derived, though you are not required to know this derivation for
the International Baccalaureate.

J ©1Comb®ge University Press 2012. i Ll bk L6 S_equ_enies and series
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difference 0.5.

\

@
We have all of the information needed to use the ®

KEY POINT 6.4

If you know the first and last terms:
n
S, ==(¢4,r#,
S G+ )
If you know the first term and the common difference:

S, = 2(2141 +(n—1)d)

There are two different forms of the formula.

second sum formula.

gy >

Sz0 =%(2x8+(50—1)x0,5) 3

=4575

W _VGy Py \

Worked example 6.9

Find the sum of the first 30 terms of an arithmetic progression with first term 8 and common

<

»fr“‘““ﬂ-, o~

d
N
.

-

Worked example 6.10

Sometimes you have to interpret the question carefully to realise
that it is about an arithmetic sequence.

Write out a few terms to see what is happening.

Find the sum of all the multiples of 3 between 100 and 1000.

Sum =102+105+108+---+ 999
This is an arithmetic series with
u, =102 and d=3.

. . . i
- Since we know the first and last terms, we can use o 999 =102+ 3(n—1) p
the first formula; but in order to do so, we also PN 897 =3(n—1) i’
need fo know how many terms are in the sequence. PN n="300 {
We find the number of terms by solving u, = 999. g
o’ 300 1
Use the first sum formula. * Sa00 = 7(102 +999) 1
L
— 165150 )
,._._‘r-—c»_r‘».__xu_,‘__‘_ﬂ' v, /—JAHA“HM_‘WA}IJ

e EDROY

\
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You need to be able to work backwards too - for example, to
find out how many terms are in a series given its sum and some
other information. Remember that the number of terms can

only be a positive integer.

e PR .t
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Worked example 6.11 Y

An arithmetic sequence has first term 5 and common difference 10. If the sum of all the terms
is 720, how many terms are in the sequence?
>

We know u;, d and S, so in the second sum*® 720 =L (2x5+(n-1)x10)
formula n is the only unknown. 2
=%(10+10n—10)

=bn?

@
Solve this equation to find n. * n? =144

Therefore
n==12
But n must be a positive integer, so n=12. ‘}

Ada PV
_a M‘“‘»‘-"fﬂ‘ﬂ

MJ“H‘M’M\MAM.‘AJ"‘“%A

\ .

. Exercise 6D

1. Find the sum of the following arithmetic sequences.
(a) (i) 12,33,54,... (17 terms)
(i) —100,—85,—70,... (23 terms)

(b) () 3.15,...,459 (i) 2,11,...,650

(c) () 28,23,...,-52 (i) 100,97,...,40
11

d) (i) 15155,...,29.5 (i) —,=,...,1.5

(d) (@) (i) =%

2. An arithmetic sequence has first term 4 and common
difference 8. Find the number of terms required to get a sum of:
(a) (i) 676 (ii) 4096 (iii) 11236
(b) x%, x>0

The second term of an arithmetic sequence is 7. The sum of
the first four terms of the sequence is 12. Find the first term,
a, and the common difference, d, of the sequence. [5 marks]

Consider the arithmetic series 2+ 5+ 8 + ...
(a) Find an expression for S,, the sum of the first n terms.
(b) Find the value of n for which S, = 1365. [5 marks]

i — 1 — 6.§eq£n<1:es dnd series 143
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The sum of the first n terms of a series is given by S, =
2n* — n, wherene Z*.

(a) Find the first three terms of the series.

(b) Find an expression for the nth term of the series,
giving your answer in terms of n. [7 marks]

Find the sum of the positive terms of the arithmetic
sequence 85,78, 71, .... [6 marks]

The second term of an arithmetic sequence is 6, and the
sum of the first four terms of the sequence is 8. Find the
first term, a, and the common difference, d, of the
sequence. [6 marks]

a Consider the arithmetic series —6+1+8+15+---

Find the least number of terms so that the sum of the

series is greater than 10000. [6 marks]
A g The sum of the first n terms of an arithmetic sequence is
S, = 3n? - 2n. Find the nth term, u,, [6 marks]

A circular disc is cut into twelve sectors whose angles are
in an arithmetic sequence. The angle of the largest sector
is twice the angle of the smallest sector. Find the size of the
angle of the smallest sector. [6 marks]

The ratio of the fifth term to the twelfth term of a sequence
6
W] in an arithmetic progression is e If each term of this

sequence is positive, and the product of the first term and
the third term is 32, find the sum of the first 100 terms of
4 the sequence. [7 marks]

1D

What is the sum of all three-digit numbers which are
multiples of 14 but not 21?2 [8 marks]

Geometric sequences

A geometric sequence has a constant ratio between terms. To
] get from one term (u,) to the next (u, . ,), you always multiply by
& the same number, which is called the common ratio and usually
- denoted by . So geometric sequences obey the recursive rule

144 Topic 1: Algebra © Com!oricl_g University Press 2012.

INOT TOr printing, sharing or d D on

Ny - hed

4= b




e

un+l =r un

Here are some examples of geometric sequences:
1,2,4,8,16,... (r=2)
100,50,25,12.5,6.25,... (r= %)
1,-3,9,-27,81,... (r=-3)

As with arithmetic sequences, to fully define a geometric
sequence we also need to know the first term, u,.

To obtain the deductive rule, observe that in order to get to
the nth term starting from the first term, you need to multiply
by the common ratio n —1 times. For example, u, = ru,,

us = ru, = r’*u,, and so on.

KEY POINT 6.5

u, =u r"!

Worked example 6.12

ratio take?

Write an expression for the 7th term in terms of u; and r.

But we know v, =13.

Repeat the same process for the 9th term.

Divide the two equations to eliminate u; and hence solve for r.

The 7th term of a geometric sequence is 13. The 9th term is 52. What values could the common

by SBF° )
i

6 \

12=ur M ]

d

§

52 = uyr® ) f
(2)+(1) gives 1
4=y t‘uh
r==x2 4

._‘_,_,J/“'h-m—.ﬁ___‘wJ J

EXAM HINT

Notice that the question asked for values rather than a
value. This is a big hint that there is more than one answer.

i
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When questions on geometric sequences ask which term
satisfies a particular condition, you can either generate the
sequence with your calculator and inspect the values, or use
logarithms to solve an equation.

Worked example 6.13

A geometric sequence has first term 2 and common ratio —3. Which term has the value —4374?

{
n—1
Write down the formula for the nth term. ® u, =2%(-3) é
1
{‘
L\

Use a table on your GDC to list the terms of the o From GDC: ug = -4574
sequence and search for -4374. (See calculator skills It is the &th term.

sheet 10 on the CD-ROM ) y

i ROV R W "‘““*‘____,»-AJ

.

It may be that the value of n you seek is large, in which case it
could be impractical to search through a table on your calculator.
Instead, try to set up an equation and solve it using logarithms.

4%
_ Worked example 6.14

A geometric sequence has first term 5000 and common ratio 0.2.

Which term is equal to 3.36x107", correct to three significant figures?

n Express the condition as an equation. ¢ 5OOO><(042)”_1 — 3.36x10-5 )
/ {
; [ . 336xX107° \

b/ The unknown is in the exponent, so solve using < 02y = 5000 t

| logarithms. =6.72x107 §

A i

log{(0.2)") =l0g(6.72 x 107¢) §

: 4
4 (n—"log0.2 = ~18.17... f
_1= 817 _ o5 9901 z

log0.2 3

| son=27 )

Pt e p A )

\ .

See section 2G if you
.z need a reminder of
<[how to solve expo-<1
i nential  equations
{ using logarithms.

=

© Com!oridg University Press 2012.
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. Exercise 6E

1. Find an expression for the nth term of the following geometric

sequences.

(a) (1) 6,12,24,... (i) 12,18,27,...
11

b) (i) 20,5,1.25,... i) 1L,—,—,...

(b) () (ii) >

(o) (1) 1,-2,4,... (i) 5,-5,5,...

(d) G) a,ax,ax?,... (i) 3,6x,12x2,...

2. Find the number of terms in each of the following
geometric sequences.
() (i) 6,12,24,...,24576 (i) 20,50,...,4882.8125
®) () 1,-3,...,-19683 (i) 2,-4,8,...,—1024
11 1 4 %

PEREIERE (11) 3,2,_,‘..,
2 4 1024 3 729

3. How many terms are needed in the following geometric
sequences to get within 10~ of zero?

1
(@) (i) 5L (i) 0.6,0.3,0.15,...
(b) () 4,-2,1,... (i) —125,25,-5,...

The second term of a geometric sequence is 6 and the fifth
term is 162. Find the tenth term. [5 marks]

The third term of a geometric sequence is 112 and the sixth
term is 7168. Which term takes the value 18350082  [5 marks]

=

=
%
£
=

2 4 2"
) a Which is the first term of the sequence FEb that is

less than 10792 [6 marks]

The difference between the fourth and the third term of

. .75 . .
a geometric sequence is ry times the first term. Find the

common ratio given that r > o. [6 marks]

B The third term of a geometric progression is 12 and the
fifth term is 48. Find the two possible values of the
eighth term. [6 marks]

L L) © .Cqmbj_iggg University Press 2012. M ld bl g 6 §gqu.er1,ies q.'.ld series 147




g The first three terms of a geometric sequence are

a,a+14,9a. Find the value of a. [6 marks]

The three terms a, 1, b are in arithmetic progression. The

three terms 1, g, b are in geometric progression. Find the
values of a and b given thata # b. [7 marks]

The sum of the first n terms of an arithmetic sequence {u,}

is given by S, = 4n* — 2n. Three terms of this sequence, u,,
u,, and u,,, are consecutive terms in a geometric sequence.
Find m. [7 marks]

148 Topic 1: Algebra
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Geometric series

When you add up the terms of a geometric sequence, you get a
geometric series. As with arithmetic series, there is a formula for
the sum of # terms in a geometric sequence. See the Fill-in proof 4
‘Self-similarity and geometric series’ on the CD-ROM if you are
interested in learning where this formula comes from.

KEY POINT 6.6

or equivalently

EXAM HINT

Generally we use the first of these formulas when the

common ratio is less than one, the second when the
common ratio is greater than one. This way we can avoid
working with negative numbers as much as possible.

© Cambridge University Press 20°
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Worked example 6.15 'f-

Find the exact value of the sum of the first 6 terms of the geometric sequence with first term 8

1
and common ratio >

1
1
Since r < 1, we use the first sum formula. ® S, = 1 f
’]__
2 «
1 §
o :
_ o4 ;
-1
2
o4 ]
\
_63 }
e A et st s 8 P Y ‘A‘—h‘“"‘l
\_ st ——d W,

VP e -

We may be given information about the sum and have to
deduce other information.

Worked example 6.16

How many terms are needed for the sum of the geometric series 3+6+12+24 +... to exceed

1000007

We need to find n, but first we need the values of u; and r.*

()
As r> 1, use the second sum formula and express the ®
condition as an inequality.

()
We can use a calculator to generate values for S,. *

=5 f
- {

r= 2 '\.

4

a(2" —1

n= ( ) >100 000 <
2- 4

From GDC: f
S =96 301 P,
S =196 605 !

\

50 16 terms are needed. ¢

NOPTRPW ¥ o irnd

I\
. Exercise 6F

1. Find the sums of the following geometric series. (Some of these

may have more than one possible answer.)
(a) (i) 7,35,175,... (10 terms)
(ii) 1152,576,288,... (12 terms)

@JCqmbﬂdg.e University Press 2012.
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(b) (i) 16,24,36,...,182.25
(i) 1,1.1,1.21,...,1.771561
(¢) (i) First term 8, common ratio —3, last term 52 488
(ii) First term —6, common ratio —3, last term 13122
(d) (i) Third term 24, fifth term 6,12 terms
(ii) Ninth term 50, thirteenth term 0.08, last term 0.0032

@ 2. Find the value of the common ratio if
(a) (i) the first term is11, sum of the first 12 terms is 2 922 920
(ii) the first term is 1, sum of the first 6 terms is 1.24992
(b) (i) the first term is 12, sum of the first 6 terms is —79 980

(ii) the first term is 10, sum of the first 4 terms is 1

The nth term, u,, of a geometric sequence is given by
u, =3x5m2,

(a) Find the common ratio .

(b) Hence or otherwise find S,, the sum of the first n terms of
| this sequence. [5 marks]

The sum of the first three terms of a geometric sequence

is23 Z, and the sum of the first four terms is 40 g Find the

first term and the common ratio. [6 marks]

! A The first term of a geometric series is 6, and the sum of the
first 15 terms is 29. Find the common ratio. [5 marks]

The sum of the first four terms of a geometric series is 520.
The sum of the first five terms is 844. The sum of the first
six terms is 1330.

(a) Find the common ratio of the geometric progression.
(b) Find the sum of the first two terms. [6 marks]

Infinite geometric series

b If we keep adding together terms of an arithmetic sequence,
the sum will grow (or decrease) without limit, and is said to be
{ divergent. This can occur with some geometric series, too, but
] it could also happen that the sum gets closer and closer to and
Al ‘settles down’ to a finite number; in this case we say that the

b geometric series is convergent.

<
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The graph shows the values of S, for a geometric series with first
term u; = 4 and common ratio r = 0.2. As n increases, the value
of S, seems to be getting closer and closer to 5; thus we say that
the series converges to 5.

Not all geometric series converge. To determine which ones do,
we need to look at the formula for a geometric series:

B ul(l—r”)
a 1-r

S,
We want to know what happens to S, as n gets large, so we focus
on the r" term. With most numbers, when you raise the number
to a larger power the result gets bigger; for example, 1.2%° = 38.3
and 1.2% =237. The exception is when r is a number between
—land 1. In this case, r" gets smaller as n increases - in fact,

it approaches zero; for example, 0.2? = 0.04,0.2° = 0.008 and
0.2 =1.05x107"*. This means that for —1 <r <1, as n increases

the value of S, will get closer and closer to li
—r

KEY POINT 6.7
As n increases, the sum of a geometric series converges to

U
S, =

if |r|< 1.
1-r

This is called the sum to infinity of the series.

| 7| is the modulus, or absolute value, of 7. The modulus leaves
positive values unchanged but reverses the sign of negative
values. So, |8| =8 and |-8| = 8.

- = — — e — ¢ — —o
. -

When r =1, the
geometric series
certainly diverges. But
when r=-1, it is not

clear whether the series
converges or diverges: the sum

u
could have value O, u; or 5‘

depending on how the terms
in the series are grouped.
This is an example of a
situation where mathematics

is open fo debate.

EXAM HINT
S

The condition that
r <‘ is .\US‘ as

“mpoﬂdm as the
tormula itself.

Worked example 6.17

common ratio.

Write the given information as equations in u; and r.*

e . . .6 .
The sum to infinity of a geometric sequence is 5. The second term is s Find the

i

-4 _g O
1—r i

6 {

Ty SHF==— (2) ,'
_—>

© Cambridge University Press 2012.
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continued . . .
s J
Solve the equations simultaneously. © From (2): :
© 1
u=-—
Br <
Substituting into (1): ‘:
6 <
- 5r(1-r) B f
—6=25(r—r?) )
25r2 — 25r —6=0 }
(Br-6)(5r+1)=0 ‘J
Therefore r = — orr=—i f
B B <
Watch out! Check whether the series actually ¢ But since the sum to infinity j
converges for the rvalues found. e e s v |27 26 {
\
r:_% J
S i W P fr‘wHW‘J
\_ .

Some questions may focus on the condition for the sequence to
converge rather than the value that it converges to.

Worked example 6.18

The geometric series (2—x)+(2— ) +(2—x) +--- converges. What values can x take?

[

Identify r. r=(2-x)

A A thaaertimadan,

Use the fact that the series converges. * Since the series converges,
[2-x|<1
®
Convert the modulus expression into a*® —1<2—-x<1
double inequality. & -3<—x<- :
Therefore <
1<x<d

S

PN e N

\ _ .
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. Exercise 6G

1. Find the value of each of the following infinite geometric series,
or state that the series is divergent.

1 1
(@) () 9+3+142+... (i) 56+8+1_+...

(b) (i) 0.3+0.03+0.003+...
(ii) 0.78+0.0078+0.000078 +...

19 19 19
(c) (i) 0.01+0.02+0.04+... (i) —+—+—+
10000 1000 100
8
(d) (i) 10-2+0.4+... (ii) 6—4+§+...
(e) (i) 10—40+160+... (ii) 4.2—3.36+2.688+...

2. Find the values of x which allow the following geometric
series to converge.

(a) (1) 9+9x+9x%+... (i) —2-2x—-2x>+...
(b) (i) 14+3x+9x2+... (i) 14+10x+100x2+...
(c) (i) —2—-10x—50x2+... (i) 8+24x+72x*+...
(d) (i) 40+10x+2.5x2+... (i) 144+12x+x>+...
5 25
(e) (i) 243—-81x+27x%*+... (ii) I—Zx+gx2+...
6 12 9 1
) 1) 3——+—+... (i) 18—=+—+...
x x? x  x?

(g) (i) 5+5(3—2x)+5(3-2x)" +...
7(2—x)+ 7(2—x)’ .

(i) 7+ 3 ,
2 2
) () 1+[3—Ej+(3—zj P PR (LI
X X X x?
(1) (1) 7+7x*+7x*+... (ii) 12—48x3+192x° +...
Find the sum to infinity of the geometric sequence
-18,12,-8,.... [4 marks]

The first and fourth terms of a geometric sequence are 18
2
and -3 respectively.

(a) Find the sum of the first n terms of the sequence.

(b) Find the sum to infinity of the sequence. [5 marks]
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f(x)=1+2x+4x?+8x>+... is an infinitely long
expression. Evaluate

1
(@ f (5)
2
(b) f(gj [6 marks]

a A geometric sequence has all positive terms. The sum of
the first two terms is 15 and the sum to infinity is 27. Find
the value of

(a) the common ratio
(b) the first term. [5 marks]

The sum to infinity of a geometric series is 32. The sum
of the first four terms is 30 and all the terms are positive.
Find the difference between the sum to infinity and the
sum of the first eight terms. [5 marks]

e Consider the infinite geometric series

{3

(a) For what values of x does the series converge?
(b) Find the sum of the series if x=1.2. [6 marks]

a The sum of an infinite geometric sequence is 13.5, and
the sum of the first three terms is 13. Find the first term.
[6 marks]

An infinite geometric series is given by 2 2(4—-3x)k.
k=1
(a) Find the values of x for which the series has a finite sum.
(b) When x = 1.2, find the minimum number of terms
needed to give a sum which is greater than 1.328.  [7 marks]

The common ratio of the terms in a geometric series is 2~

(a) State the set of values of x for which the sum to
infinity of the series exists.

(b) If the first term of the series is 35, find the value of x
for which the sum to infinity is 40. [6 marks]
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Mixed questions on sequences and (3
series

Be very careful when dealing with questions on sequences and
series. It is vital that you first:

o identify whether the question is about a geometric or an
arithmetic sequence

« determine whether you are being asked for a term in the
sequence or a sum of terms in the sequence

« translate the information given into equations that you can
work with.

One frequently examined topic is compound interest. The
questions are usually about savings or loans, where the interest
added is a percentage of the current amount. As long as no other
money is added or removed, the balance of the savings account
or loan will follow a geometric sequence. A compound interest

p

rate of p% is equivalent to a common ratio of r =1+ 100’

Worked example 6.19 _

A savings account pays 2.4% annual interest, added at the end of each year. If $200 is paid into
the account at the start of the first year, how much will there be in the account at the start of the
7th year?

D) 4

Each year the balance of the account is increased by the ® Geometric sequence with ‘:
same percentage, so this gives a geometric sequence. he 1t 24 — 1004 ;r

{

u, =200 ;

If the start of the first year is v, the start of the 7th year is u,.* Uy =uyr® ‘:
= 23058 \
There will be $220.58. ¢

et a0 A Al Phue., e

. .

EXAM HINT

Think carefully about whether the amount you are
calculating is for the beginning or the end of a year.
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Philippa invests £1000 at 3% compound interest for 6 years.
(a) How much interest does she get paid in the 6th year?

(b) How much does she get back after 6 years? [6 marks]

Lars starts a job on an annual salary of $32000 and is
promised an annual increase of $1500.

(a) How much will his salary be in the 20th year?

(b) After how many complete years will he have earned a total
of $1 million? [6 marks]

A sum of $5000 is invested at a compound interest rate of
6.3% per annum.

(a) Write down an expression for the value of the investment
after n full years.

(b) What will be the value of the investment at the end of
five years?

W | (c) The value of the investment will exceed $10000 after
n full years.

(i) Write an inequality to represent this information.

(ii) Calculate the minimum value of n. [8 marks]

Suppose that each row of seats in a theatre has 200 more seats
than the previous row. There are 50 seats in the front row and
the designer wants the theatre’s capacity to be at least 8000.

3 (a) How many rows are required?

(b) Assuming the rows are equally spread, what percentage of
people are seated in the front half of the theatre? [7 marks]

A sum of $100 is invested.

(a) If the interest is compounded annually at a rate of 5% per
year, find the total value V of the investment after 20 years.

(b) If the interest is compounded monthly at a rate of %% per

month, find the minimum number of months for the value
of the investment to exceed V. [6 marks]

ji
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a A marathon is a 26-mile race. In a training regime for a
marathon, a runner runs 1 mile on his first day of training and

1
increases his distance by 1 of a mile each day.

(a) After how many days has he run a total of 26 miles?
(b) On which day does he first run over 26 miles? [6 marks]

A football is dropped vertically from 2 m above the ground.
A model suggests that each time it bounces up to a height of
80% of its previous height.

(a) How high does it bounce on the 4th bounce?
(b) How far has it travelled when it hits the ground for the 9th
time?

(c) Give one reason why this model is unlikely to work
after 20 bounces. [7 marks]

a Samantha puts $1000 into a bank account at the beginning
of each year, starting in 2010, which corresponds to year 1.
At the end of each year, 4% interest is added to the account.

(a) Show that at the beginning of 2012 there is
$1000+$1000x1.04+$1000 % (1.04)” in the account.

(b) Find an expression for the amount in the account at the
beginning of year n.

(c) When Samantha has a total of at least $50000 in her
account at the beginning of a year she will start looking for
a house to buy. In which year will this happen?  [7 marks]

Summary

« Sequences can be described by either recursive (term to term) or deductive (nth term) rules.

« A series is a sum of terms in a sequence; it can be described concisely using sigma notation:

S )= FO+ Q)+t f(n)

« One very important type of sequence is an arithmetic sequence, which has a constant

difference, d, between consecutive terms. The relevant formulas are given in the information
booklet:

—  if you know the first term u,, the nth term in the sequence is: u, = u; +(n—1)d

. . . n
- if you know the first and last terms, the sum to the nth term in the series is: S, = E(Lt1 +u,)
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- if you know the first term and the common difference, the sum to the nth term in the
n
series is: S, = E(Zul +(n—1)d)

Another frequently encountered type of sequence is a geometric sequence, which has a
constant ratio, r, between consecutive terms. The following formulas are also given in the
information booklet:

- if you know the first term u;, the nth term in the sequence is: u, = u; "

u (1—r") or u (r"—1)
1-r r—1

- the sum of the first n terms in the series is: S, = (r#1)

As the number of terms being added increases, a series can be convergent (the sum gets
closer and closer to a single finite value) or divergent (the sum increases or decreases without

bound).

- if|r|<1, the sum to infinity of a geometric series is given by

Introductory problem revisited

A mortgage of $100000 has a fixed rate of 5% compound interest. It needs to be paid off
in 25 years by fixed annual instalments. Interest is debited at the end of each year, just
before the payment is made. How much should be paid each year?

Imagine two separate accounts: one in which the debt is accumulating interest, and another
in which you deposit your payments, where they acquire interest at the same rate. The first
payment you make will have interest paid on it 24 times, the second payment will have 23
interest payments, and so on.

After 25 years, the amount in the debt account will be 100 000 x 1.05%.
If the annual payment is $x, the amount in the credit account will be:
xX1.05" +x x1.057 + x x1.052 +...+ x x1.05' + x
This is a finite geometric series with 25 terms, where the first term is x and the common ratio
is 1.05. Therefore, using the second sum formula in Key point 6.6, it can be simplified to
x(1.05% —1)
1.05-1

If the debt is to be paid off, the amount in the credit account must equal the amount in the
debt account; that is,
x(1.05% —1)

1.05-1
Solving this gives x = 7095.25, so the annual instalment should be $7095.25.

100000 x1.05% =

158 Topic 1: Algebra © Cambridge University Press 2012.
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Mixed examination practice 6

Short questions

The fourth term of an arithmetic sequence is 9.6 and the ninth term is 15.6.
Find the sum of the first nine terms. [5 marks]

1
. Which is the first term of the sequence SR that is less than 1072

L
9’ [5 marks]

L»Ib—‘

The fifth term of an arithmetic sequence is three times larger than the

. . common difference
second term. Find the ratio . [6 marks]
first term

n +4n
n Evaluate 2 [6 marks]

Find the sum of all the integers between 300 and 600 which are
divisible by 7. [7 marks]

a A geometric sequence and an arithmetic sequence both have 1 as their
first term. The third term of the arithmetic sequence is the same as the
second term of the geometric sequence. The fourth term of the arithmetic
sequence is the same as the third term of the geometric sequence.
Find the possible values of the common difference of the arithmetic
sequence. [7 marks]

Find an expression for the sum of the first 23 terms of the series
3 a3 a3 3
+In—+In—=+In

a
In— —+
T T e

giving your answer in the form ln(Z—nJ where m, neZ. [7 marks]

Long questions

1. Kenny is offered a choice of two investment plans, each requiring an initial
investment of $10000.
Plan A offers a fixed return of $800 per year.
Plan B offers a return of 5% each year, reinvested in the plan.

Find an expression for the amount in plan A after n years.

© Cambridge University Press 2012. 6 Sequences and series 159
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Find an expression for the amount in plan B after n years.
Over what period of time is plan A better than plan B? [10 marks]

2. Ben builds a pyramid out of toy bricks. The top row contains one brick, the
second row contains three bricks, and each row beneath that contains two
1l more bricks than the row above.

> &)) How many bricks does the nth row (from the top) contain?
= If a total of 36 bricks are used, how many rows are there?

In Ben’s largest ever pyramid, he noticed that the total number of bricks
was four more than four times the number of bricks in the bottom row.
What is the total number of bricks in this pyramid? [10 marks]

3. A student writes ‘1’ on the first line of a page, then the next two integers
2,3’ on the second line of the page, then the next three integers ‘4,5,6’ on
the third line. She continues this pattern.

How many integers are there on the nth line?
What is the last integer on the nth line?
: What is the first integer on the nth line?

(©)) Show that the sum of all the integers on the nth line is g(n2 +1).

- The sum of all the integers on the last line of the page is 16 400. How many
lines are on the page? [10 marks]

4. Selma has taken out a mortgage for £150000. At the end of each year, 6%
interest is added, and then Selma pays £10 000.

Explain why at the end of the third year the amount still owed is
150000 % (1.06)° —10000 % (1.06)> —10000 X 1.06 — 10000

Find an expression for how much is owed at the end of the nth year.

After how many years will the mortgage be paid off? [10 marks]
/ : , o
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L ° In this chapt
B|n0| | ||a| WillBeam? 1) 2
. ® how to exbo;\d Cﬂ;
ion of th
expansion gk
integer n

* how to find individual
terms in the expansion
of (a+b)" for a positive
integer n.

Introductory problem

Without using a calculator, find the value of (1.002)*
correct to 8 decimal places.

A binomial expression is an expression that contains two terms,
for example a+b.

Expanding a power of a binomial expression could be
performed laboriously by expanding brackets; for example, ® )
(a+ b)7 could be found by multiplying out, at length,

(a+b)(a+b)(a+b)(a+b)(a+b)(a+b)(a+b)

This is time-consuming and mistakes could easily be made, but 3
fortunately there is a much quicker approach.

Introduction to the binomial
theorem )

To see how we might rapidly expand an expression of the
form (a+b)" for an integer power n, let us first look at

some expansions of (a+b)" done using the slow method of o
multiplying out brackets repeatedly. The table shows the results ;
for n=1,2,3 and 4; in the rightmost column, the coefficients

and powers in the expansions are coloured to highlight the

pr—

pattern.
!
(a+ b)o =1 =1ab’
(a+b) =a+b =1a'b’ +1a°b'
(a+b)2 =a’+2ab+b? =1a’b’ +2a'b' +1a°b?
(a+ b)3 =a®+3a’b+3ab* + b’ =1a’b" +3a’b' 4+ 3a'b* +1a°b°
(a+ b)4 =a* + 4a%b + 6ab* + 4ab® + b* =1a*b’ + 4a°b' + 6a’b’ + 4a'b> +1a°b* I
© Cambridge University Press 2012. { 71 Binomial expansion 161 A
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R

The red numbers form

a famous mathematical @
structure called

Pascal’s triangle. There are
many amazing patterns in
Pascal’s triangle - for
example, by highlighting all
the even numbers you can
generate an ever-repeating
pattern called a fractal.

EXAM HINT
EXAM HARZ

We can see several patterns in each expansion:

o The powers of a and b (coloured green) in each term always
add up to n.

o Every power of a from 0 up to #n is present in one of the
terms, with the corresponding complementary power of b.

« The pattern of coefficients (coloured red) is symmetrical.

The red numbers are called binomial coefficients. The
expansion of (a+b)" has n + 1 binomial coefficients, and
the one associated with the terms a*"b" and a’b"" is

n
denoted by (Tj .

© . See Co\cu\cﬂo{\ KEY POINT 7.1
t 3 on the
SC\(S\;éhfj\efor how Binomial theorem
ind ( ) using The coefficient of the term containing a"b" in the
fonnd { . . n
0 Jout colevlator. expansion of (a+b)" is (Tj
A5
Worked example 7.1
I Find the coefficient of x°y* in the expansion of (x+ y)s.
A o) <
/ Write down the required term in the o The required term is (5j(x)5(3’)5 y
{
'. s form (cj(a)” (b). {
: Here a=x, b=y, r=3, n=8. 9
- 4
pL1 ° \
P Calculate the coefficient and apply * (5j —56
the powers to the bracketed terms. 2 <
(x) =x° ]
(v) =v° i
(
1
The term is 56x5y? “‘,
R The coefficient is 56 j
‘ SR BT o NP > A pad
. \_ v
.I. i
.-:c -
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Sometimes one of a and b is just a number, but we treat the
expansion in exactly the same way as if both were variables.

Worked example 7.2

Find the y° term in (2+ y)s.

()
Write down the required term in the ®

form (:j(a)"r (b).

Here a=2, b=y, r=3, n=5.

5
The relevant term is (5j(2)2 (}/)5

Adoss,
A A, e et A A A

()
Calculate the coefficient and apply 5
the powers to the bracketed terms. [5) =10
(2)'=4
(v) =y
2
{‘
The term is 40y° Lj

. P |
Y PP W o e WOV VNG W N

EXAM HINT
A question may ask for the whole term or just the

coefficient. Make sure that your answer gives what was
requested!

. Exercise 7A

1. (i) Find the x°y’ term in the expansion of (x+ y)lz.

(ii) Find the a’b° term in the expansion of (a + b)m.

(iii) Find the ¢*d* term in the expansion of (c + d)s.
(iv) Find the a?b” term in the expansion of (a + b)g.
(v) Find the x?y* term in the expansion of (x + y)ﬁ.

%/& 2. (a) Find the coefficient of x> in (3 + x)*.
(b) Find the coefficient of y* in (y + 5)°.
(c) Find the coeflicient of z in (5 + 2)°.

Find the coefficient of x°y* in the expansion of (x+ y)é.
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n=>0 1
n=1 1 1
n=2 1121
n=3 113131
n=4 1146 |4

One reason that
0! = 1 was agreed
on as a convention is

because it is useful to
have this in other formulas

involving factorials. Is this a

valid mathematical reason

for assigning a certain value
to an undefined expression?

W L4

Binomial coefficients

The easiest way to find binomial coefficients is by using a
calculator, but in some situations you may need to find them
without a calculator. One method of doing this is to use Pascal’s
triangle — the pattern of red numbers in the table of binomial
expansions from the previous section arranged in the shape of a
pyramid.

The slanted sides are made up of 1s. Each of the other values
is obtained by adding the two values above it. The binomial
coeflicients of (a + b)" are found in the (n + 1)th row from the top.

Although it is not difficult to generate Pascal’s triangle, finding
binomial coefficients in this way is impractical when 7 is

large. In such cases, there is a formula that can be used. Before
introducing this formula we need to define a new function, the
factorial function #! (pronounced ‘n factorial’).

KEY POINT 7.2

For a positive integer n,

n!l=1x2x3x---x(n—-1)xn

0! is defined to be 1.

Using the factorial function, it is possible to write down a simple
formula for the binomial coefficients. You do not need to know
the proof of this formula.

KEY POINT 7.3

n n!
Binomial coefficient: ( j= —
") ri(n—r)!

© Com.brid e University Press 2012.
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Worked example 7.3 (3

6
Evaluate | 4 |.

© !
Using the formula with n = 6, r=4* (4)=L
41x 21
and n-r=2.
_ IX2X3X4X5X6
(IX2x2x4)x(1x2)
_5x06
2
=18

P A - AI_AH-A—‘_’*H‘"‘“-—»P J/“AAN_._._HWul

puTey .
Ao M.- A A
w B -

v

Using the formula, we can find expressions for binomial
coeflicients with general n and small values of r.

KEY POINT 7.4
n n n) nn-1)
(o)1 () ()%

These expressions are useful when part of an expansion has
been given.

Worked example 7.4

The expansion of (1+x)" up to the third term is given by 1+ 6x + ax?. Find the value of n and

of a.

> \
Write out the first three terms of the * " " d
expansion of the lefthand side in (1+x) =1+(1jx+(2jx2 +o 4
«
terms of n. 1 §

=1+nx+—”(n_)x2+--- j
Compare this with the given Comparing coefficients of x gives JJ
expression 1+ 6x+ax?. n=6 ‘,
]

Comparing coefficients of x* gives 1

nin—1) . 2

2 1

<

a= 6x5 =k La

2 d

L e OV NEURNY e

\S — i WV
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( . Exercise 7B

1. If we say that the first row of Pascal’s triangle is 1,1, find:
(a) the second row
(b) the third row
(c) the fifth row

2. Find the following binomial coefficients.

@ (] @ (3)
® o (3) @ (o)
© @) (?] (i) (lg j

3. (i) Find the coefficient of xy* in the expansion of (x + y)

(ii) Find the coefficient of x*y* in the expansion of (x + y)7.
7

4

(iii) Find the coefficient of ab® in the expansion of (a + b)
(iv) Find the coefficient of a°b® in the expansion of (a + b)s.

Find the coefficient of x* in (3+ 2x)5 ) [4 marks]

Suppose that (2+x)" =32+ax+---
(a) Find the value of n.
(b) Find the value of a. [5 marks]

a Suppose that (1+2x)" =1+20x+ax>+---
(a) Find the value of n.
(b) Find the value of a. [5 marks]

Applying the binomial theorem

In section 7A you learned the general pattern for expanding powers
of a binomial expression (a + b). Many expansions can be done
using this method, if we substitute more complicated expressions
for a and b.
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Worked example 7.5 f'

Write down the required term *
in the form (:j(a)‘” (b)', with

a=x, b=3y?, r=2, n=8.

Calculate the coefficient and cpp|y°.
the powers to the bracketed terms.

Find the term in xy* in the expansion of (x+3y?)

' ; m
{ P\ N - -

.I| ’

8

&)
The relevant term is (Zj(x)é (53/2)2

()=

(e =x°

(3y?) =9y*

W . DWW

. O VN

The required term is 26 X x° X 9y* = 252x° y* J
|

Bt

EXAM HINT

A common mistake is to assume that the powers of each
variable in the term you're asked to find correspond to
the value of r in the expansion; but as you can see in this

example, y is raised to the power 4 while ris 2.
Take care also to apply the power not only to the variable but

also to its coefficient. In this example, (3y2)° = 9y4, not 3y*.

Although examination questions typically ask you to calculate
just one term, you should also be able to find the entire
expansion. To do this, repeat the calculation for each of the
values that r can take (from 0 up to #) and then add together
all these terms. This leads to the following formula given in the

Formula booklet.

KEY POINT 7.5

Binomial theorem

n n
(a+b)" =GF +(1ja”1b+...+(rjaﬂfbf 4.4+ b
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Worked example 7.6

5

Use the binomial theorem to expand and simplify (2x —3y)

Write down each term in*" The expansion is
i 12x)° + 5(2x)* (=3y) + 10(2x)° (=3y )
the form (’r’j(a) (b), with (2x)” + 5(2x)" (-3y) + 10(2x) (-3y)" +
10(2x) (-By)” + 5(2x) (-3y)" + 1(-2y)’
a=2x, b=—3y, n=2>5.
Coefficients are 1,5,10,10.,5,1

__eAMeaa,, PPN
———— —_—

()
Apply the powers to the bracketed * =32x° — 240x*y + 720x% y? —1080x%y?
terms and multiply through. +810xy* —245y° o J
fA_f-—‘ ;“"“»H"—.ﬁnff S e " S

- s

J

A question may ask for a term in a binomial expansion where
‘a’ and ‘b’ in the binomial expression both contain the same
variable. You can use the rules of exponents to determine which
term of the expansion is needed.

Worked example 7.7

7
1
Find the coefficient of x° in the expansion of (sz - —j .

X

@
Start with the form of a general * Each term will be of the form
term and simplify using the rules of .
exponents. 22 (—xY
: : (=0

y - (7](2)” o ()

r

(Jer e

r

Ada Ada
Y TP U

|

71
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continued . . .

The power of x in the required term ¢

is 5, so equate that to the power of
x in the general term.

()
Write down the required term *

in the form (’:)(a)"_’ (b, with

a=2x?, b=—x", n=7, r=3.

Calculate the coefficient and apply *
the powers to the bracketed terms.

()
Combine the elements to calculate ®
the coefficient.

EXAM HINT

Need 14 —-3r=5
5r=9
Fr=8

7
The relevant term is [5j(2x2 ) (~x~)’

The term is 35 X 16x% X (—x?) = -560x°
The coefficient is =560

If ‘" or ‘b’ has a negative sign, it must stay with each of
the terms a"”b" in the expansion and needs to be acted

upon by the corresponding power. Lots of people forget the
negative signs!

You may need to work with the product of a binomial
expression and a power of another binomial expression.

~ © Cambridge University Press 2012.
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A Worked example 7.8

Use the binomial theorem to expand and simplify (5—3x)(2— x)4.
4 N
To expand (2-x), write down each The expansion is
. 5—30)[1(2) +4(2)° (-

term in the form (nj(a)"r (b). ( 0L )2 i (2 A x)1+ . .

' 6(2) (=x) +4(2) (=x) +1(=x)"]

Here a=2, b=-x, n=4
Coefficients are 1,4,6,4,1

@
5 multiplies the square bracket and ® =5[16 - 22x + 24x* - &x° + x*]
-3x multiplies the square bracket. -3x[16 - 32x + 24x? — &x% + x*|

=80 -208x +216x° —12x% + 29x* —3x°
— A M—F‘m—;_“‘#_“ J/‘"“*um___

E_\_,f“_\*r%__“_ A e an A A s

-
!
\

When x is a small number (modulus less than 1), high powers
of x will be very small, even after multiplying by a binomial
coefficient. Thus, if we take a binomial expansion involving
values of x very close to zero and throw away terms containing
higher powers of x, this should have little impact on the overall
value of the expansion. Truncated binomial expansions, which
retain only a few terms containing low powers of x, are useful
for calculating approximate values of powers of numbers.

KEY POINT 7.6

If the value of x is close to zero, large powers of x will be
extremely small.
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Worked example 7.9 v

Find the first 3 terms of the expansion of (2— x)5 in ascending powers of x. By setting
x=0.01, use your answer to find an approximate value of 1.99°.

o §

Write down each term of the The first 3 terms are 3

. 5 PRV 1 mN\D 2

expansion in the form (7](0)“ (b), 1(2)" +5(2) (-x) +10(2)" (-x) J
\

with a=2, b=-x, n=5. j
d <
Apply the powers to the bracketed =32 - 80x + 80x? 4
terms and multiply through. ]
<
[

0 — 0 — <

Calculate the powers of the given ¢ =l = R f

value of x and hence the value of x=001 = —80x=-08&

each term in the expansion. x2 =0.0001 = 80x% =0.008 3

|

Add up the values of the terms. ¢ Hence, approximately, 1
1.99° =32 -0.86+0.0086 = 31.208 d

L Y f“'—‘*“-»u"*'-"»f’mwuﬁjj

I\
. Exercise 7C

1. (a) Find the coeflicient of xy* in

() (2x+3y)" (i) (5x+y)"
(b) Find the term in x*y* in
(i) (x—2y)7 (ii) (y—2x)7

(c) Find the coefficient of a?b? in
5
(i (Za - %bj (if) (17a+3b)°

2. (a) (i) Fully expand and simplify (2 — x)s.
(ii) Fully expand and simplify (3+ x)é.
(b) (i) Find the first three terms in the expansion of

(3x+ y)s in descending powers of x.
(ii) Find the first three terms in the expansion of
(2c—d)" in ascending powers of d.

3

(c) Fully expand and simplify (2x? —3x)
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(a) Find the first 3 terms in the expansion of (3 — Sx)4 )

(b) By choosing a suitable value of x, use your answer
from part (a) to find an approximation for 2.995%.
[7 marks]

Find the first 4 terms in the expansion of (y+3y> )6 in
ascending powers of . [6 marks]

Which term in the expansion of (x—2 y)5 has coefficient

(a) 40°?

(b) -80°? [6 marks]
a Find the coefficient of x* in (1— 5x)’. [4 marks]
Find the x? term in (3—2x)7. [4 marks]
e Find the coefficient of x2y° in (3x+2y? )5. [5 marks]

8
1

g Find the coefficient of x? in the expansion of (x + —j .
X

\% (a) Find the first 3 terms in the expansion of (2+ 3x)7.

(b) Hence find an approximation to

(i) 2.37 (i) 2.037
(c) Which of your answers in part (b) provides a more
accurate approximation? Justify your answer. [6 marks]

2 5
(a) Expand (e+—) .
e

2\ 2y
(b) Simplify (e+—] +(e——j . [7 marks]
e

(S

The expansion of (x+ay)" contains the term 60 x*y”.
(a) Write down the value of n.
(b) Find the value of a. [4 marks]

4
Complete and simplify the expansion of [Zz2 + éj ,
which begins with 16z® +96z°. z [4 marks]
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(a) Write the expression (1 + x)” (1 - x)" in the form
(f ()
(b) Find the first three non-zero terms in the expansion of
(1- x)10 (1+ x)10 in ascending powers of x. [6 marks]

The expansion of (sz y+ S_x] begins with
y

27x°y° +135x°y.
(a) Write down the value of n

(b) Complete and simplify the expansion [5 marks]

5
1
Find the coefficient of x? in the expansion of (Zx + —j .

Jx

[4 marks]
Find the constant coefficient in the expansion of (x —2x 2 )9. EXAM HINT
EART ———
[4 marks] The ’conS*G‘)‘
7 coefficient’ is the
.0 |t ma
IEY Find the term in x° in (xz _3) : [6 marks] term in x°. | 'bZ
x also be descr!
as lthe term { Xl
Find the term that is independent of x in the expansion of independem orn:
12
5
(Zx - —} . [6 marks]
x2

Find the coefficient of x° in the expansion of (1+3x) (1+x)".

If (1 +ax)"=1+ 10x + 40x? + ---, find the values of a and
of n.

Summary
« A binomial expression is one that contains two terms, e.g. a + b.

o The binomial coefficient, (}:j, is the coeflicient of the term containing a" " b" in the expansion
of (a + b)~.

o The expansion of (a + b)" can be accomplished directly by using the binomial theorem:
n n
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o The coeflicient of individual terms in a binomial expansion can be found by looking at the
powers of the algebraic components and using the formula for the rth term

n
@(ar-f by

with appropriate choices of #, r, a and b.

« Approximations to powers of numbers can be made by taking the first few terms of a binomial
expansion (a + bx)" and substituting an appropriate small value for x, so that terms containing
higher powers of x will be negligible.

Introductory problem revisited

Without using a calculator, find the value of (1.002)' correct to 8 decimal places.

The first step is to recognise that (1.002)'° can be obtained by evaluating the binomial expansion
(1 + 2x)" with x = 0.001.

To ensure accuracy to 8 decimal places, we need to include terms up to x*= 10~ at least; we can
safely disregard terms in x* and greater powers, since these will be too small to affect the first 8
decimal places of the result.

\
Write down each term in the form «* The first 4 terms are i
N\, oy 10 +10(1) (2x) + 45(1)° (2x)° +120(1) (2x)°
"Nar )
with a=1,b=2x,n=10.
Apply the powers to the bracketed ** The first 4 terms are
terms and multiply through. 14 20x + 180x? + 960x? .
()
Calculate the powers of the * x0 =1 1=1 i
appropriate value of x and thus x' =0.001 20x' = 0.02
the value of each term. x2 = (0.000 001 160x2 = 0.000 18

x°=0.000 000 001 960x° =0.000 000 96 |

Total the values of the terms. «® Hence 1.002° = 102018096 4

o
T T T W P T W PR WPV WO o

From calculator, 1.002' =1.020 180 963 368 08...
So approximation error is 3.30 X107 =0.000 000 33%

[ lipciflodbe v i i o 8 Cambridge Universiy Pres; 20)2
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Mixed examination practice 7

Short questions

Find the coeflicient of x° in the expansion of (2 - x)u. [5 marks]

Fully expand and simplify (2x' +5 y)3 [4 marks]

Let a=2—+/2. Using binomial expansion or otherwise, express a°

in the form m+n+/2. [5 marks]

Find the constant coefficient in the expansion of (x* —2x7)". [4 marks]
2 4

Fully expand and simplify(x2 - —j . [6 marks]
X

a Find the coefficient of c*d"" in the expansion of (2¢+5d)(c+ d)" [6 marks]

Find the coefficient of x° in the expansion of (1—x?)(1+ x)’. [5 marks]

Long questions
AL Sketch the graph of y=(x+2)’.
Find the binomial expansion of (x + 2)3.
Find the exact value of 2.001°.
Solve the equation x* +6x*+12x+16=0. [12 marks]

2. The expansion of (2x+ ay)" contains the term 20x°y2
Write down the value of .
Find the value of a.
Find the first four terms in ascending powers of y.

Hence or otherwise, find 20.05" correct to the nearest hundred.
You do not need to justify the accuracy of your approximation. [11 marks]
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In this chapter you
will learn:

* about different units for
measuring angles, and

Circular
measure and
ity trigonometric

e the definitions of .
the sine, cosine and f t
tangent functions, their u n C I O n S
basic properties and
their graphs

* how fo calculate
certain special values

of trigonometric Introductory problem

functions A clock has an hour hand of length 10 cm, and the centre
* how fo apply your of the clock is 4 m above the floor. Find an expression for

knowledge of the height, h metres, of the tip of the hour hand above the

transformations of floor at a time t hours after midnight.

graphs to sketch
more complicated
trigonometric functions

Measuring angles is related to measuring lengths around the
perimeter of a circle. This observation leads to a new unit

for measuring angles, the radian, which will turn out to be
more useful than the degree as a unit of angle measurement in
advanced mathematics.

* how fo use
trigonometric functions
to model periodic
phenomena.

_J  Periodic motion is motion that repeats after a fixed time

- interval. Motion in a circle is just one example of this; other

14 A examples include oscillation of a particle attached to the end of
a spring or vibration of a guitar string. There are also periodic

phenomena where a pattern is repeated in space rather than in
_ time - for example, the shape of a water wave. All of these can
] be modelled using trigonometric functions.
! 1,...‘
) r.' ¥
hi
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An angle measures the amount of rotation between two straight
lines. You are already familiar with measuring angles in degrees,
where a full turn measures 360°. There are two directions (or senses)
of rotation: clockwise and anti-clockwise (counter-clockwise). In
mathematics, the convention is to take anti-clockwise as the positive
direction. In the first diagram below, the line OA rotates 60°
anti-clockwise into position OB. Therefore AOB = 60°.

B

210°
0 A A
0
00” 150°
A C C

In the second diagram, the line OA rotates 150° clockwise into
position OC. Clockwise rotations are represented by negative
angle measures; therefore AOC = —150°, Note that we can also
move OA to position OC by rotating 210° anti-clockwise, as
shown in the third diagram, so it is equally correct to say that
AOC =210°, In this book, as well as in exam questions, it will
always be made clear which of the two angles is required.

g.’ You may wonder why there are 360 degrees in a full turn. Division of a full rotation
“* into 360 equal angles seems already to have been standard for geometers in ancient
Babylon, Greece and India. It is believed to have come from ancient astrologers, who
noticed that the stars appeared to rotate in the sky, returning to their original positions
after around 360 days. They therefore divided a full rotation into 360, so that each day’s
rotation would be equal to one unit. We now know that there are 365.24 days in a year, so
these ancient astrologers were quite accurate — you may want to think about how one might
measure the number of days in a year.

P(A)

{4
f8
H

£
-

h'_'.

Defining a full turn to be 360° is somewhat arbitrary, and
there are other ways of measuring sizes of angles. In advanced The unit circle will be

mathematics, the most useful unit of angle measurement is the > used when defining >

radian. This measure relates the size of the angle to the distance trigonometric  func-
moved by a point around a circle. tions in Section 8B.

Consider a circle with centre O and radius 1; this is called the

unit circle. Let A and B be two points on its circumference. As Recall that an arc is
the line OA rotates into position OB, point A moves a distance <[ the path joining two <[
equal to the length of the arc AB. The measure of the angle points on a curve.

AOB in radians is defined to be this arc length.
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A
= If point A makes a full rotation around the circle, it will cover a
() distance equal to the length of the circumference of the circle.
: As the radius of the circle is 1, the length of the circumference
is 2m. Hence a full turn measures 2w radians. From this we can
\ u deduce the sizes in radians of other angles; for example, a right
T
angle is one quarter of a full turn, so it measures 2n+4= Y
4 radians. Although the sizes of common angles measured
: ', in radians are often expressed as fractions of 7, we can also
: use decimal approximations. Thus a right angle measures
0) approximately 1.57 radians. The fact that a full turn measures
. 27 radians can be used to convert any angle measurement from
b ) degrees to radians, and vice versa.
Worked example 8.1
(a) Convert 75° to radians.
P (b) Convert 2.5 radians to degrees.
% . . 0. 7% 5 j
What fraction of a full turn is 75°2 (a) =2 -2
B 260 24 \
o B 51
R Calculate the same fraction of 27 * — X2m=— i
2 24 12 ]
M 7B = on radians '
A 12 (
> |
g This is the exact answer. Using a calculator, we can® 75° =131 radians (5 SF) 1
I find the decimal equivalent to 3 significant figures. 4
- 25 i
[ () o
0y - What fraction of a full turn is 2.5 radians2*® (b) 2—(z 0.3979) {
n
{
7 b
. o 25 {
Calculate the same fraction of 360°. ZY X BGO = 143.239. .. \
. 2n
nl . °
2.5 radians = 142° (3 SF)
\ Sy TSI ¥ e J
i) <
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KEY POINT 8.1

full turn = 360° = 21 radians

half turn =180° = & radians
To convert from degrees to radians, divide by 180 and
multiply by m:
T X degrees
180

To convert from radians to degrees, divide by w and
multiply by 180:

radians =

180 X radians
degrees =———
T

Our definition of radian measure used the unit circle. However,
we can consider a point moving around a circle of any radius.

Think about what happens as the line OA rotates into position
OB.

There are various
other measures of
angle. For example, a

unit that originated in
France when the metric
system was introduced is the
gradian, which is one-
hundredth of a right angle.
In most countries today, use
of the gradian continues only
within a few specialised
fields, such as architectural
surveying and artillery. Since
there are so many different
ways of defining angle units,
does this mean that the facts
you have learnt — such as
there being 180 degrees in
a triangle - are purely
consequences of particular
definitions and have no link

P(A)

fo truth?
The distance covered by point A will be the arc length, /. : —
Since the entire circumference is 27r, the fraction of the circle 1 |
l —
travelled is —. ’
2nr R B o
Let 6 be the measure of AOB in radians; this corresponds to a
l
fraction 2£ of a full rotation.
T
Now we have two expressions for the proportion of the circle /N N
covered as we move from OA to OB: one from considering the A |
length of the arc, and the other from considering the size of the f-,)
angle. Both give the fraction of the circle covered by the sector :
AOB, so they must be equal:
6 I I g
—=— =f=- =
2n  2mr r J i
KEY POINT 8.2 P
The radian measure of an angle in a circle is given by =3
/
f=—
’
That is, the measure of the angle is the ratio of the length of
the arc to the radius of the circle. /
In particular, an angle of 1 radian corresponds to an arc (A
whose length is equal to the radius of the circle. - (
P&
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Radians will be used

- whenever we differ-
E entiate or integrate

]> trigonometric func-
'3 tions (from chapter
X\ 12 onwards).

EXAM HINT
1)
Some people’
angles in radians
as, for instance,
g=1 371rad of
g=13Y, bl‘.l’f
the \mernohono\
Baccalaureate
does not use this
notfation.

write

>

In the unit circle (where r = 1), the size of an angle is
numerically equal to the length of the arc; however, these

two quantities have different units. If we think of the size of
an angle as a ratio of two lengths (as in Key point 8.2), then

it should have no units. This is why the radian is said to be a
dimensionless unit and, when writing the size of an angle in
radians, we need only give the angle as a number, for example
&=131.

All this may sound complicated, and you may wonder why we
cannot just use degrees to measure angles. You will see in the
next two sections that the formulas for calculating lengths and
areas of parts of circles are much simpler when radians are used,
and the advantages of using radians will become even clearer
when you study calculus.

If we think of angles as measuring the amount of rotation
around the unit circle, then we can represent an angle of any
size by its corresponding point on the unit circle. As mentioned
earlier, the convention in mathematics is to measure positive
angles by anti-clockwise rotations. Another convention is that
we consider the unit circle as having its centre at the origin

of the coordinate system, and start measuring from the point
on the circle which lies on the positive x-axis. In the first
diagram below, the starting point is labelled A, and the point

P corresponds to the angle 60°. In other words, to get from the
starting point to point P, we need to rotate 60°, or one-sixth of a
tull turn, anti-clockwise around the circle.

b p

A

0 A \_/ A

4507

We can also represent negative angles (by clockwise rotations)
and angles larger than 360° (by rotating through more than
one full turn). The second diagram above shows point P
representing the angle of 450°, or one and a quarter turns.
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There is a three-dimensional analogue of an angle, called a solid angle. The size of a solid
&2 angle has units of steradians, which measure the fraction of the surface area of a sphere
covered. Many aspects of two-dimensional trigonometry can be transferred to these
solid angles.

Worked example 8.2

(a) Mark on the unit circle the points corresponding to the following angles, measured in degrees:

A:135° B: 270° C: —120° D: 765°
(b) Mark on the unit circle the points corresponding to the following angles, measured in radians:
T Ry 131
A B: —— C:— D: —
2 2 3

>
135=90+ 45, so point A represents quarter plus*
another eighth of a full turn.

Maen

—
D
N
aomas

270 =3x90, so point B represents rotation through *
three right angles.

120=360+ 3, so point C represents a third of a full *
turn, but clockwise (because of the minus sign).
765=2x360+ 45, so point D represents two full * C

turns plus one half of a right angle.

N
/i

.‘
Q
s T VSN .
A g VCPYNY W et A A A A et A A

7 radians is one half of a full turn so point A* (b) D
represents half a turn.
n_ 1 | ®
2= ZXQﬁ, so point B represents one quarter of a ¢
full turn in the clockwise direction. R
5 ’
775 = 2n+g, so point C represents a full turn <*
followed by another quarter of a turn.
13 . B
TTE =4n+ g, so point D represents two full turns «*
followed by another % of a turn.
e e e A A »f/“‘ Absen., .‘_,IF‘J
\_ .
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2
Looking at the number .*
line in this way should “*
suggest why radians
are a more natural
measure of angle than
degrees. While radians are
rarely used outside the
mathematical community,
within mathematics they are
the unit of choice.

A

X |

N( L

42

S
' /
C
.

The idea of representing angles by points on the unit circle can
be applied to numbers too: instead of representing numbers

by points on a number line, we can represent them by points
on the unit circle. To do this, imagine wrapping the number
line around the unit circle: start by placing zero on the positive
x-axis (point S in the diagram) and then, going anti-clockwise,
lay positive numbers on the circle. As the circumference of the
circle has length 2w, the numbers 27w, 4m and so on will also
be represented by point S. The numbers &, 3w, 5T and so on are
represented by point P. The number 3, which is a little less than
T, is represented by point A.

2

Similarly, we can represent negative numbers by wrapping the
negative part of the number line clockwise around the circle.
For example, the number —3 is represented by point B and the
number —7 by point C (7 is a bit bigger than 2w, which means
wrapping once and a bit around the circle).

It is useful to describe where points are on the unit circle by
using quadrants. A quadrant is one quarter of the circle, and

(
< conventionally quadrants are labelled going anti-clockwise,
| f starting from the top right one. So in part (a) of Worked
- example 8.2, point A is in the second quadrant, point B in the
X third quadrant and point D in the first quadrant.
’ . Exercise 8A
1. Draw a unit circle for each part and mark the points
= corresponding to the given angles:
= @ () 60° (i) 150°
' (b) (i) —120° (i) —90°
| (c) (i) 495° (i) 390°
N /
1
P < — . : —
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2. Draw a unit circle for each part and mark the points
corresponding to the following angles:

@ ()%
ONCE=

© O3
(d) (i) —2m

in terms of T
(a) (i) 135°
(b) (i) 90°
(©) (i) 120°
(d) (i) 50°

N
oK
Ok

LT
(ii) p
(ii) —4m

3. Express the following angles in radians, giving your answers

(ii) 45°
(i) 270°
(i) 150°
(i) 80°

4. Express the following angles in radians, correct to 3 decimal

places:

(@) (i) 320°
(b) (i) 270°
(c) (i) 65°
(d) (i)100°

(ii) 20°
(i) 90°
(ii) 145°
(ii) 83°

5. Express the following angles in degrees:

)T
@ 03
®) 6) =

© 03
(d) (i) 1.22

LL 'r.r' qmb_ﬂ’ggfa Un

T
(ii) 1
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6. The diagram shows point P on the unit circle corresponding

to angle # (measured in degrees). Copy the diagram and
mark the points corresponding to the following angles.

(a) (i) 180°—@ (i) 180°+&
(b) (i) #+180°  (ii) &+90°

(c) (1) 90°—-¢ (ii) 270°-¢
(d) (i) 9-360°  (ii) H+360°

. 'The diagram shows point Q on the unit circle

corresponding to the real number &.

Copy the diagram and mark the points corresponding to
the following real numbers.

(a) (1) 2m—¢€ (i) m;— &
(b) (1) f+m= (i) —-m—¢
© () 5+6 ()50
(d) () ¢-2m (i) #+2m

(.
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Definitions and graphs of the sine
and cosine functions

We now define trigonometric functions.

For a real number o, mark the point A on the unit circle that

represents the number o (or, equivalently, the angle o radians).

The sine and cosine of o are defined in terms of the distance
from point A to the x-and y-axes. (Remember that, by
convention, the unit circle has its centre at the origin of the
coordinate axes.)

ns and triggnomﬁﬁyl_ g X © Camb idge University Press 2012.
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KEY POINT 8.3

The sine of the number o,
written sin o, is the distance —
of the point A above the N
horizontal axis (its sin o
y-coordinate).

The cosine of the number o,
written cos @, is the distance
of the point A to the right
of the vertical axis (its
x-coordinate).

You have previously seen sine and cosine defined using right-angled triangles.
See Prior Learning section U on the CD-ROM for a reminder.

The definition in Key point 8.3 is consistent with the definition by right-angled triangles,
but it further allows us to define sine and cosine for angles beyond 90°. This raises the question
of how to decide which of several alternative definitions to use — should we go with the one that
came first historically, the one that is more understandable, or the one that is more general?

Worked example 8.3

By marking the corresponding point on the unit circle, estimate the value of cos2.4.

> ‘

0 4

T <1.6and 1=3.1, so the point is around _r1

the middle of the second quadrant. 4
‘(
4
{
{

{

{

(

E

0524 =~ 0.7 )
———e A e me W e OV e .‘

. _/
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Key  point 8.1
describes how to
<1 change from radians <[
to degrees and vice

versa.

186  Topic 3: Circular functions and trigqnom?try i
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Notice that in the above example cos 2.4 was a negative number.
This is because the point corresponding to 2.4 lies to the left of
the vertical axis, so we take the distance to be negative.

You can find sine and cosine values, such as the ones in the
previous example, using your calculator.

Most GDC calculators have buttons for the sine, cosine (and
tan) functions. If you were to work out the answer to the
question in Worked example 8.3 using your GDC, you would
simply press [cos] [2][.][4][EXE] and you would get the answer
-0.737... (provided your calculator was in radian mode). As the
question used an angle measured in radians, you would need to
make sure your calculator was set to radians. If your calculator
was in degree mode, your calculator would interpret cos 2.4 as
the cosine of 2.4° rather than 2.4 radians and you would get an
answer of 0.999..., which is incorrect.

See Calculator skills sheet 1 for how to determine if your
calculator is in radians or degree mode, and how to change
between them.

Note however, that if your calculator had been in degree
mode and you had keyed in the cosine of the equivalent angle
in degrees, i.e. 137.5° (which is approximately 2.4 radians),
then you would have got the correct answer of —0.737.... This
demonstrates that it does not matter whether you find the sine
or cosine of an angle in degrees or radians (the answer will

be the same) provided that your calculator is in the correct
mode according to the form of the angle you enter into your
calculator.

© Cambridge University Press 2012.
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We can use the unit circle to get information about functions of
angles related to one we already know about.

Remember that sin o is the distance of the point of interest
(e.g. A) on the circumference above the horizontal axis (its
y-coordinate) and cos o is the distance of A to the right of the
vertical axis (its x-coordinate).

COos «

sin

Worked example 8.4
Given that sin &= 0.6, find the values of

(a) sin(m—4#) (b) sin(&+m)

Mark the points corresponding to & and ¢ (@)
n— 6 on the circle.

—————
e
\—&’m

Since sine of a number is defined to be the <* The points are the same distance from and
y-coordinate of the corresponding point on on the same side of the horizontal axis, so
the unit circle, compare the positions of the sin(n—6)=0.6

PN

points relative to the horizontal axis.
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continued . ..

..
Mark the points corresponding to ¢ and (b)
6+ m on the circle.

\

——
>

Compare the positions of the points relative «* The points are the same distance from but
to the horizontal axis. on opposite sides of the horizontal axis, so

sin(@+m)=-0.6

\A‘Mw

The above example illustrates some of the properties of the sine
function. Similar properties hold for the cosine function. The
symmetry results summarised below are useful to remember.
They can all be derived using circle diagrams.

KEY POINT 8.4

EXAM HINT
N

These results tdfe
jven in the
‘\;gtrr?\u\o booklet,
so make sure that
ou are able to
work them out
from a quick
sketch of @ qrc\e
by considering
the S,yn'\me'me':‘-
involved.

For any real number x:

sinx = sin(m — x) = sin(x + 27)

T— T or T+ 21
sin(m + x) = sin(—x) = —sinx

cos x = cos(—x) = cos(x + 2m)

T+ @

cos(m—x)=cos(m+ x)=—cosx
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Worked example 8.5

Given that sinx = 0.4, find the value of:

(a) cos(% - x) (b) cos (x + g)

Mark on the unit circle the points corresponding *

T
to X, g—x and x+ . The point P represents the

2

number x, and we know that PX =sinx=0.4.

8

»
g— X is represented by point A, and AY = PX.*

@
x+% is represented by point B, and BY = PX, but* ®) coe(x+ )_ 04

AADY o PPV v VY
E_\“-"‘ NAA..___‘__‘AAL_‘-f“““-ﬁ-_Am..__‘_.kA ny

B is to the left of the vertical axis. L s o Pl A rn

i

\

-

The above example illustrates a relationship between sine and
cosine functions. It will be useful to remember the following
results, or be able to derive them from a circle diagram.

KEY POINT 8.5
In chapter 9 you will

For any real number x:
see another connec-

T . 5 37 tion between the sine
! P I [>>and cosine functions, |>>
o which arises from
n , A
cos(— +x |=—sinx Pythagoras’ Theorem.
2

. T
Sin E—X =C0SX

. (T
sm(5+x) =COSX

In Key points 8.4 and 8.5, the variable x was an angle measured
in radians. Analogous results can be derived when the variable
represents an angle measured in degrees.
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{fﬂ I:l f [ 1T A N
P

] Given that & is an angle measured in degrees such that cos #= 0.8, find the value of

(a) cos(180°+6) (b) sin(90°-46)

Worked example 8.6

—

Mark on the circle the points corresponding to ¢ T,
angles &, 180°+ & and 90° -

We know that the point representing 6 is at

distance 0.8 from the vertical axis.

—
=
=
—
©
o

| °
o)

7

AR A e A At A e . A A

180°+6 (a) R

For the point representing 180° + @, its distance ¢ (a) cos(180° + )= —
from the vertical axis is also 0.8, but it lies to the
left of the axis.

The point representing 90°— & is the reflection of ¢ (b) sin(90°—H)=0.6
the point representing 6 in the diagonal line y = x,
i so the distance from the horizontal axis is O.8. e 0]

\ v

)
-f So far we have focused on the sine and cosine of angles, but in
reality the domain of the sine and cosine functions is all real
numbers.

| B Having defined the sine function for all real numbers, we can

| draw its graph. To do this, let’s go back to thinking about the real
= number line wrapped around the unit circle. Each real number
corresponds to a point on the circle, and the value of the sine
N function is the distance of the point from the horizontal axis.
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All of the properties of the sine function discussed above can be
seen in its graph. For example, increasing x by 27 corresponds
to making a full turn around the circle and returning to the
same point; therefore, sin(x + 2m) = sin x. We say that the

sine function is periodic with period 2r. Looking at the

graph below, by considering points A and B we can see that
sin(—x) = —sinx. We can also see that the minimum possible
value of sinx is —1 and the maximum value is 1. Thus we say
that the sine function has amplitude 1.

Y

5
3

/27r — B

KEY POINT 8.6

A function is periodic if its pattern repeats regularly. The
interval between the start of two consecutive repeating
blocks is called the period.

The amplitude of a periodic function is half the distance
between the maximum and minimum values.

To draw the graph of the cosine function, we look at the
distance from the vertical axis of the point on the unit circle
representing the real number x.
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Again, we can see on this graph many of the properties
discussed previously; for example, cos(—x)=cosx and

cos(m — x) = —cos x. The period and the amplitude are the same
as for the sine function. In fact, the graphs of the sine and cosine
functions are related to each other in a simple way: the graph of
y=cosx is obtained from the graph of y =sinx by translating

We discussed the T
<l transformations 0f<1 it 5 units to the left. This corresponds to one of the properties

. ) . n
graphs in chapter 5 listed in Key point 8.5: cosx = sm(x + 5)

KEY POINT 8.7

The sine and cosine functions are periodic with period 27.

The sine and cosine functions have amplitude 1.

Trigonometric functions can be used to define polar coordinates. This alternative to the
Cartesian coordinate system makes it easier fo write equations of certain graphs. Equations W
in polar coordinates produce some beautiful curves, such as the cardioid and the polar rose.

1 . Exercise 8B

% 1. Write down the approximate values of sinx and cosx for
the number x corresponding to each of the points marked
on the diagram.

—~—
©
Naod

®)
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2. Use the unit circle to find the following values:

(a) (4) sing (i) sin2m
(b) (i) cos0 (i) cos(—m)
© () sin(—g) (ii) c:os%’t

3. Use the unit circle to find the following values:

(a) (i) cos90° (i) cos180°
(b) (i) sin270° (i) sin90°
(¢) (i) sin720° (i) cos450°

b4
4. Given that COSE =0.809, find the value of:
41T 21w
(a) cos? (b) cos?

(c) cosg—n (d) cos6—n
< 5

. 2T
5. Given that Sln? =0.866, find the value of:

sin(ﬂ) b sin4—n
(@) sin| — (b) sin=

LT
(c) Sinl()_n (d) sin—
3 3

6. Given that cos40° =0.766, find the value of:
(a) cos400° (b) co0s320°
(c) cos(—220°) (d) cos140°

7. Given that sin130° =0.766, find the value of:
(a) sin490° (b) sin50°
(c) sin(-130°) (d) sin230°
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P [ % 8. Sketch the graph of y=sinx for:
(a) (i) 0°<x <180° (i) 90° < x < 360°
®) () -TSx<Z (i) -n<x<om

% 9. Sketch the graph of y=cosx for:
(a) (i) —180°<x<180° (ii) 0<x<270°

3
(®) () gs;cs?" (i) —m<x<2m

10. (a) On the unit circle, mark the points representing

T T 21
—,— and —.
6 3 3

(b) Given that Sing =0.5, find the value of:

i 2T
1) COS— 11) COS—
(i) 3 (ii) 3

11. Use your calculator to evaluate the following, giving your
answers to 3 significant figures:

(a) (i) cosl.25  (ii) sin0.68
(b) (i) cos(—0.72) (ii) sin(—2.35)

12. Use your calculator to evaluate the following, giving your
answers to 3 significant figures:

(a) (i) sin42° (ii) cos168°
(b) (i) sin(—50°) (ii) cos(—227°)

¥
4

Simplify cos(T+ x)+ cos(T — x). [3 marks]
& Simplify the following expression:

. . I . . 3n .
sin x + sin x+5 +sin(x + 1)+ sin x+7 +sin{x +2m)
[5 marks]

Definition and graph of the tangent
function
We now introduce another trigonometric function: the tangent

(- tunction. It is defined as the ratio between the sine and the
cosine functions.

—
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KEY POINT 8.8

*‘* why the tangent
function is given this

cosx name. On the unit
circle, if we draw a tangent
You may notice that there is a problem with this definition: e 2 (2l representing
divide b hen it i Thus th x, then tan x will be the
we ca‘nno.t 1vide by cosx when 1t 1s zero. lhus t etangenjc distance along this tangent
function is undefined at values of x where cosx = 0; that is, o s Tl erd. Sam

sinx

0’ You may wonder
tanx = |

tan x is undefined for P 3n 5w you can prove this based on
e 27272777 your understanding of sine

and cosine on the unit circle.
By considering the signs of sinx and cosx in different

quadrants, we can see that tanx is positive in the first and third
quadrants, and negative in the second and fourth quadrants. It
is equal to zero when sinx =0, that is, at x =0,7,2m,... / e
Since sin(x+m) = —sinx and cos(x +T)=—cosx (see Key
point 8.4), we have
sin(x+m) —sinx sinx
tan(x+m) = = = =tanx
cos(x+T) —cosx cosx
So the tangent function is periodic with period m: I
tanx = tan(x + ) = tan(x + 2m) =... _5
Using the information we have collected above, we can sketch r
the graph of the tangent function. The graph will have vertical Vertical asymptotes
T 3T 51 <[ were discussed in <[
asymptotes at X =—,——,——... ne
2272 chapters 2 and 4. *
KEY POINT 8.9
The graph of the tangent function is: R)
‘2
i i a8
™ 1" j’ t
_\5 \5
i i EXAM HINT o
You should O\W\Oys
. . ians uniess
Remember that points on the unit circle can also represent use {o;:{ Gr’;‘o\d fo use Z
angles measured in degrees. Sometimes you may be asked to expliclly

work in degrees.
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Worked example 8.7

Sketch the graph of y=tanx for —90° < x <270°.

The given domain —90° < x <270° covers the o
fourth quadrant, first quadrant, second
quadrant, and then third quadrant.
Find the values of x for which tan x is not defined.

()
When is the function positive/negative?®
When is it zero?

Start by marking the asymptotes and zeros. *

-

tanx is undefined when cosx =0, i.e.

at

x =-90°, 90°, 270°

tanx is:

negative in the fourth quadrant,
positive in the first quadrant,
negative in the second quadrant,
positive in the third quadrant.
tanx =0 at x = 0°and 180°

|
|
|
|
|
|
|
|
|
|
|
|
|
|
i
—90°
|
|
|
|
|
|
|
|
|
|
|
|
|
|

e o p.

|

A-f‘“‘—kf‘—*n“..g Mt A smasrhoe A S s A eae S A P i A e o

el
L ey O S
—_
[os}
[=3
°
no
[
(=]

. Exercise 8C

diagram.

(a) (i) tanl.2

(b) (i) tan(—0.65)

196 Topic 3: Circular functions and triggnom?tr.y ol

. Sketch the graph of y =tanx for:
(a) (i) 0°<x<360°

T 5T
b) () =x=

(ii)
(ii)

1. By estimating the values of sin# and cos#, find the
approximate value of tan# for the points shown on the

—90° < x <270°

—T<x<T

3. Use your calculator to evaluate the following, giving
your answers to 2 decimal places:

(ii) tan4.7
(i) tan(-7.3)

© Cambridge University Press 2012.
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4. Use your calculator to evaluate the following, giving
your answers to 3 significant figures:

(a) (i) tan32° (ii) tan168°
(b) (i) tan(—540°) (ii) tan(—128°)

5. Use the properties of sine and cosine to express the
following in terms of tan x:

(a) tan(m—x) (b) tan(x + g)
(c) tan(x+m) (d) tan(x+3mw)

6. Use the properties of sine and cosine to express the
following in terms of tan £°:

(a) tan(—&°) (b) tan(360°—&°)
(c) tan(90°—¢°) (d) tan(180°+ &°)

7. Sketch the graph of:
s
(i) y=2sinx—tanx for 5 <x<2m

(ii) y=3cosx+tanx for -x<x<m

8. Find the zeros of the following functions:
(i) y=2tanx°+sinx° for 0< x <360
(ii) y =3cosx°—tanx® for —180 < x <360

9. Find the coordinates of the maximum and minimum
points on the following graphs:

(i) y=3sinx—tanx for 0<x<2m

(ii) y=cosx—2sinx for -r<x<m

10. Find approximate solutions of the following equations,
giving your answers correct to 3 significant figures:

(i) cosx—tanx=3, x€]0,2n[

(i) sinx+cosx=1, x [0, 2x]

-y II'J - © Cambridge Univers futy Press 2012 “ 8 Circular measure and tr.i‘gorﬁnnftric.fynctic_n’s 197 :

k. O . [ fle gle} Il. C DR =i




.'_ | e _ g ~ - o 5 /

€)Y Exact values of trigonometric
functions

Although generally values of trigonometric functions

are difficult to find without a calculator, there are a few

special numbers for which exact values can easily be found.
The method relies on the properties of two special right-angled
triangles.

Worked example 8.8

. T T
Find the exact values of sin T COSZ and tanz.

Mark the point corresponding to % on the®

unit circle (point A in the diagram).

povey
B o M-\hm-gm-gwhh\,"

Look at the triangle OAB. It has a right°. 6’ +52=1,80 5= L Hence
angle at B, and the angle at O is equal 2
= - to 45° (because T s one-eighth of a oin = cos X = i
B full turn). 4 2
xl
We can now use the definition «® tan® o 2%
of tan x. 4 cosi

M»W&WN“’JI_‘%»‘J

The other special right-angled triangle is made by cutting an
3 z equilateral triangle in half.

) Cambridge University Press 2012.
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Worked example 8.9

2n
Find the exact values of the three trigonometric functions of —.

Mark the point corresponding to 2?7: on*

the unit circle. 2?75 is one-third of a full

turn (120°), so angle AOB is 60°.

Triangle AOB is half of an equilateral ¢ 2

triangle with side length 1. Point A is to the left of the vertical axis,
OB is equal to half the side of the

2T
. . 50 cos— <0
equilateral triangle. 3

1Y 3
To find AB, use Pythagoras’ Theorem. ¢ AB? =12 —(—) ——

3]
Use the definition of tan x.* - _ B
)

\ - MM#MJ/-‘AN%P

Ve

o
3
Il
|
‘—‘-t"“—“n_._..‘\, St be A At fan A mara. o P S Uy O S N T

A A~

v

The sine, cosine and tangent values of other special numbers
are summarised below. You should understand how they are
derived, as shown in Worked examples 8.8 and 8.9.

~ © Cambridge Univer:
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(1) R
.P[_ KEY POINT 8.10

A ») -E.:": i L L S =l e

radionc R P T N I A I
adians 6 4 3 2 3 4 6
Degrees 0 30 45 60 90 120 135 150 180
. 1 2 NG NG V2 1
sin x 0 = - X2 1 N2 N it 0
2 2 2 2 2 2
Lo B 2]l o | 1| V2| B
2 2 2 2 2 2
L not _L
0 V3 1 V3 | defined | —V3 -1 V3 0

EXAM HINT

The angles g,% and g come up so frequently in exam

questions that it is useful to memorise the results for
them, rather than having to repeatedly derive the values
from triangles. The table might be easier to remember
if you notice the pattern in the values of sin and cos:
0.1 2 B (V4

2272772 )

. Exercise 8D

'z. 200  Topic 3: Circular functions and frigonometry © Combrid_gg University Press 2012.

1. By marking the corresponding points on the unit circle, find
the exact values of

3n T
(a) cos . (b) cos;

5m 3n
(c) sin (d) tan 1

2. Find the exact values of

. T . I
(a) sm6 (b) sin p

(c) cos(4—n) (d) tan(—ﬁ)
3 3

~ Not for printing, sharing or istr_iution.




% 3. Find the exact values of
(a) cos45° (b) sin135°
(c) cos225° (d) tan225°

% 4. Find the exact values of
(a) sin210° (b) cos210°
(c) tan210° (d) tan330°

% 5. Evaluate the following, simplifying as far as possible.

(a) 1-sin? (g)

(b) sin(E) + sin(E)
4 3

(c) cosg - cos%

% 6. Show that
(a) sin60°c0s30°+ cos60°sin30° =sin90°

(b) (sin 45")2 +(cos 45")2 =1

(c) cos? (E) —sin? (E) = cos(E)
6 6 3

(d) (1 + tang)2 =4+23

Transformations

Transformations of trigonometric g functionsand o
graphs graphs were intro-

duced in chapter 5.

In this section we shall apply the ideas from chapter 5 to the
trigonometric graphs we have met. This will enable us to
model many real-life situations which show periodic behaviour
(see section 8F), and will also be useful in solving equations
involving trigonometric functions.

EXAM HINT
A

sin2 X is not the
same as 2sinx-
\mpOﬂOnt\\/r
Sin2X - gnnot be

First, consider how we might obtain the graph of y =sin2x by
using its relationship with y = sin x. The equation y =sin2x is
of the form y = f(2x) where f(x)=sinx, so we need to apply a

2
simp lified to sinx!
Plot the functions

Can
on your
compare the results.

1
horizontal stretch with scale factor 3 to the graph of y =sinx.

We can see that the amplitude of sin2x is still 1, but its period
is halved to m.

J
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Yy =sinx Yy = sin 2z

2

Now let us sketch the graph of y =2sinx. This is of the
form y=2f(x) where f(x)=sinx, so we need to apply a
vertical stretch with scale factor 2 to the graph of y =sinx.
The resulting function has amplitude 2, while the period is
unchanged.

Y

‘y: 2sinx

A
A

Yy =sinx 2m

We can combine these two types of transformation (horizontal
and vertical stretches) to change both the amplitude and the
period of the sine function. The same transformations can also
= be applied to the graph of the cosine function.

n(
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KEY POINT 8.11

The functions y =asinbx and y = a cosbx have amplitude

 on
a and period —.

b

y = a sin bx

\

Worked example 8.10

(a) Sketch the graph of y = 4cos(§) for 0<x<6m.

(b) Write down the amplitude and the period of the function.

Start with the graph of y = cosx and® (a) Vertical stretch with scale factor 4
think about what transformations to Horizontal stretch with scale factor 3
apply fo it.
4 y =4 cos (5)

N /]

6

EXAM HINT
EXAE ——
AWrite down’ means

—4

8
’-“‘—M-....., A Aen™btay L\ A M ao A Aceaitie,  ,

that hyou do :\\(?:‘gee (b) Amplitude = 4
to show WO :

ARy

Period = % =0n 3
N SRV f“‘h“"‘»u“‘ﬂ-u-}_m-‘} ._,M‘*-—‘.L*—-‘»“J
\_ .

Besides vertical and horizontal stretches, we can also apply
translations to graphs of trigonometric functions. They will
leave the period and the amplitude unchanged, but will change
the positions of maximum and minimum points and the axis
intercepts.
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Worked example 8.11

(a) Sketch the graph of y=sinx+2 for x €[0,2m].

The equation is of the form y = f(x)+2 where *
f(x)=sinx. What transformation does this
correspond to?

We know that the minimum and maximum <*
values of sinx are 1 and -1, so add 2
to those values.

(b) Find the maximum and the minimum values of the function.

(a) Apply vertical translation by 2 units

upward to y =sinx

Y

3

/

y=sinx + 2

(b) Minimum value: —1+2=1
Maximum value: 1+2=3

y = sin x

- f‘m-\u-“-“‘»q..} W O S

/.
\/

PUT I
“~
Bt 00 A A ™ in A S 0 A s A M

]
)

In the next example we consider a horizontal translation.

Worked example 8.12

they occur.

The equation is of the form y =f(x+30)
where f(x)=cosx. What transformation
does this correspond to?

(a) Sketch the graph of y = cos(x+30°) for 0° < x <360°.

(b) State the minimum and maximum values of the function, and the values of x at which

(a) Apply horizontal translation by 30 units

leftward to Yy =cosX,

)

A

1

re

y = cos(r +30°)

Aan A A g oA M aa

180°

Y =Cos T

PUTY

\

—
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LI - -
continued . . . .‘
The minimum value of cosx is -1, and in* (b) Minimum value is —1
the interval [0°, 360°] it occurs at It occurs at x = 180° — 30° = 150°
x = 180°. Since the graph is translated d
30 units to the left, we subtract 30.
>
The maximum value of cosx is 1, and ® Maximum value is 1
in the interval [0°, 360°] it occurs at It occurs at x = 360° — 30° = 330°
x=0°,360°. 3
Pick the value which is in the required 3
interval after translation to the left. | | e . e ad

I EE—————

The result of applying the two types of translations and two
types of stretches to the sine and cosine functions can be
summarised as follows.

KEY POINT 8.12

The functions y =asinb(x+c)+d and
y=acosb(x+c)+d have

e amplitude a

27
e period —

b

e minimum value d —a and maximum value d +a

Note that the value of d is always half-way between the

.. . . min+max
minimum and maximum values; in other words, d = ———.

The amplitude is half the difference between the minimum and
. max —min

maximum values: 4 = ———

The value of ¢ in the above equation determines the horizontal

translation of the graph; therefore it affects the position of the

maximum and minimum points. The following example shows

how to work out these positions.
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P ( Worked example 8.13

- DANqg POATB)Y S, Jmom< o _ —
(| . - , ~ el

_f Find the exact values of x for which the function y = sin3(x +1) attains its maximum value.
. . . N T 5T 97w ¢
) When does the sine function attain its ® sinx has a maximum when x ==, —, — |
n . 2 2 2
' maximum value? ete. d
{
<
0 T 5t 97w
: The given function is of the form f(3(x+ 1)); Blatlles=——s {
i=1 . 2 2 2
! this means that x has been replaced by f
Fy) 3(x+1). 4
4 o- _m_, 5T \
p Now solve for x.* =5 L G 1, ete. }
k TN e WOV VPPV | f“““‘»u*u?‘"u
5 We can use our knowledge of transformations of graphs to find
4 an equation of a function given its graph.
ek
Worked example 8.14

The graph shown has equation y = asin(bx) +d. Find the values of 4, b and d.

A (% _2)
X
A a is the amplitude, which is half the difference A== 3
' between the minimum and maximum values. <
. T ’ od=2F_T_
E b is related to the period via the formula period = 5 ¢ el = 2 2 " i
#
0 {
The period is also the distance between two consecutive nm=2t 1
_ maximum points, which we can find ’ 5 2[7 f
> - from the graph. ence b= ‘
4
Z . . .o 4+(=2) }J
d represents the vertical translation of the graph. It is® d= > =1 :
: the value half-way between the minimum and ]
1| the maximum values. |
\ e OV _VPYRNGIGRTIY WP o ORI R T J
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. Exercise 8E (4
1. Sketch the following graphs, indicating any axis intercepts. :

(a) (i) y=sin2x for —180°<x<180°
(ii) y=cos3x for 0°<x<360°

(b) (1) y=tan(x—g) for0<x<m

T
(ii) y=tan(x+§) for 0<Sx<m

() (i) y=3cosx—2 for 0°<x<720°
(ii) y=2sinx+1 for —360° < x <360°

2. Sketch the following graphs, giving the coordinates of
maximum and minimum points.

(@) (1) y=cos(x—§) for0<x<2m

T
(i) y= sin(x + E) for0<x<2m -0

(b) (i) y=2sin(x+45°) for —180°< x <180°
(i) y=3cos(x—60°) for —180°< x <180°
() i) y=-3sin2xfor —t<x<m
(ii) y=3-2cosx for 0° < x <360°

%ﬁis 3. Find the amplitude and period of the following functions.
(a) f(x)=3sin4x, where x is in degrees B
(b) f (x) =tan3x, where x is in radians
(¢) f(x)=cos3x,where x is in degrees | e

(d) f(x)=2sinmx , where x is in radians

The graph shown has equation y = psin(gx) for 0< x<2m.
Find the values of p and q.

5

o [3 marks]
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The graph shown has equation y = acos(x —b) for
0° < x <720°. Find the values of aand b.

Y

2
/

110° 290°  470° 650° r

[3 marks]

a (a) On the same set of axes sketch the graphs of
y=1+sin2x and y=2cosx for 0< x <2m.

(b) Hence state the number of solutions of the equation
1+sin2x =2cosx for 0< x <2T.

(c) Write down the number of solutions of the equation
1+sin2x =2cosx for —2n < x < 6. [6 marks]

«. (a) Sketch the graph of y= 2cos(x + 60°) for x €[0°,360°].

(b) Find the coordinates of the maximum and minimum
points on the graph.

(c) Write down the coordinates of the maximum and
minimum points on the graph of y=2cos(x+60°)—1
for x €[0°,360°]. [6 marks]

208  Topic 3: .Circu,|ar functions and triggnom?tyy._. g X Cambridge University Press 2012.

Modelling using trigonometric
functions

In this section we shall see how trigonometric functions can be
used to model real-life situations that show periodic behaviour.

Imagine a point moving with constant speed around a circle
of radius 2 cm centred at the origin, starting from the positive
x-axis and taking 3 seconds to complete one full rotation.

A SRR o - Not for printing, sharing or distribution.




Let h be the height of the point above the x-axis. How does h
vary with time t (measured in seconds)?

We know that if the point is moving around the unit circle, the
height above the x-axis would be sin &, where & is the angle

between the radius and the x-axis. As the circle now has radius 2,

the height is 2sin&.

So, to find how h varies with time, we need to find how &
depends on time. As the point starts on the positive x-axis,
#=0 when t = 0. After one complete rotation, we have #=2m
and ¢ = 3. Because the point is moving with constant speed, we

d t
can use ratios to state that — =—, so &=—t.
2t 3 3

Therefore the equation for the height in terms of time is

2
h= 2Sin(?n tj. The diagram below shows the graph of this

function.

-2

This is an example of modelling using trigonometric functions.
We can use sine and cosine functions to model periodic motion,
such as motion around a circle, oscillation of a particle attached
to the end of a spring, water waves, or heights of tides. In
practice, we would collect experimental data to sketch a graph
and then use our knowledge of trigonometric functions to

find its equation. We can then use the equation to do further
calculations.

~ © Cambridge Univer.
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P[ Worked example 8.15

- _f The height of water in a harbour is 16 m at high ~ §
tide and 10 m at low tide, which occurs 12 hours '
later. The graph below shows how the height of
water changes with time over 24 hours.

10
(a) Find an equation for the height of water (in

metres) in terms of time (in hours) in the
form h=m+acos(bt).

(b) Find the first two times after the high tide
when the height of water is 12 m. 13 ot

®
I

>

+

S
I

We know from the previous section that m is" (a) m
the value half-way between the minimum and
maximum values, a is the amplitude, and b

is related to the period.

The amplitude is half the distance between the a=10-10_<
minimum and maximum values.

.‘
-
Q)
=
IS
S
Il
N
N

2 °
t The period is Fn on b

..
N
M\.ﬁ.—.—hA‘A“M"—q__‘__A._,\.A_——--_

[}
-f We can now write down the equation for *® So h= 15+5¢oe(£t)
% height.
| ‘E..' o.. T
;- Set h=12 and solve for t. (b) 15+5c05(—t)= 12 !
12 !
X > 4
L We can use a calculator to solve the equation. From GDC, t=7.3 or 16.7 4
d\.u
I: In chapter 9 you will see how to I:
solve the equation algebraically.
1
Answer the question. <* The height of the water will be 12m at 7.3 |
! hours and 16.7 hours after the high tide. |
ik \ A rAh‘_‘\h‘p"“——Au_A-—_' fMH,__‘-MwJJ
n
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. Exercise 8F [

The depth of water in a harbour varies during the day and

is given by the equation d =16+ 7sin(%t), where d is

measured in metres and ¢ is the number of hours after

midnight. »

(a) Find the depth of the water at low and at high tide. |

(b) At what times does high tide occur? [6 marks] f)l
The graph shows the depth of water below a walkway as a

function of time. The equation of the graph is of the form
y = acos(bt)+m. Find the values of 4, b and m.

T

12 24
[4 marks] , 124
A point moves around a circle of radius 5cm, as shown in
the diagram. It takes 10 seconds to complete one revolution. )

(a) The height of the point above the x-axis is given by
h = asin(kt), where t is time measured in seconds. h
Find the values of a and k.

(b) Find the times during the first revolution when the
point is 3 cm below the x-axis. [6 marks]

A ball is attached to one end of an elastic string; the other
end of the string is held fixed above the ground. When
the ball is pulled down and released, it starts moving up
and down, so that the height of the ball above the ground
is given by the equation h=120-10cos400¢, where h is
measured in centimetres and ¢ is time in seconds. 1 v

(a) Find the least and greatest heights of the ball above the ground.

(b) Find the time required to complete one full oscillation.

(c) Find the first time after the ball is released at which it (
reaches its greatest height. [8 marks]

Fa  © Cambridge University Press 2012. 8 Circular measure and trigonometric functions 211 e
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The unit circle is a circle with centre 0 and radius 1.

Radian measure for angles is defined in terms of distance travelled around the unit circle, so
that a full turn = 27 radians.

To convert from degrees to radians, divide by 180 and multiply by m.
To convert from radians to degrees, divide by m and multiply by 180.

Using the unit circle and the real number ¢, the sine and cosine of this number is defined in
terms of distance to the axes:

sin s the distance of a point from the horizontal axis
cos «is the distance of the point from the vertical axis
Useful properties of the sine and cosine function are summarised in Key point 8.4.

The relationship between the sine and cosine function is summarised in Key point 8.5.

The tangent function is another trigonometric function. It is defined as the ratio between the
sinx

sine and cosine functions: tanx =
Ccos x

The sine and cosine functions can be defined for all real numbers:

COST

sinx

y = sin(x)

2m

—

y = cos(x)

T y = tan(x) L

2m 0 z ™ 3m o

For some real numbers trigonometric functions have exact values, which are useful to
remember (see Key point 8.10).
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o The sine and cosine functions are periodic with period 2 and amplitude 1.

o The tangent function is periodic with period 7.

tan(x)=tan(x =) =tan(x £ 2m)=...

o We can apply translations and stretches to the sine and cosine functions. The resulting
functions y =asinb(x+c)+d and y=acosb(x+c)+d are very useful in modelling periodic
phenomena; they have:

- amplitude a

2n
- period —

b
- minimum value d —a and maximum value d+a (the value d is half-way between the
minimum and maximum values).

Introductory problem revisited

A clock has an hour hand of length 10 cm, and the centre of the clock is 4m above the
floor. Find an expression for the height, 1 metres, of the tip of the hour hand above the
floor at a time ¢ hours after midnight.

We can model the height using a cosine function (because when t = 0, the graph should be at the
maximum height). The period is 12 hours, the amplitude is 0.1 m (the length of the hand), and the
half-way height is 4m (the position of the centre of the clock). Therefore the function is

h= 4+0.1cos(gt)

AL .0 - © Cambridge University Press 2(_){!2_.
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Mixed examination practice 8

Short questions
The height of a wave, in metres, at a distance x metres from a buoy is
modelled by the function f(x)=1.4sin(3x—0.1)—0.6.
(a) State the amplitude of the wave.
(b) Find the distance between consecutive peaks of the wave. [4 marks]
yA A runner is jogging around a level circular track. His distance north of the

centre of the track in metres is given by 60c0s0.08¢, where ¢ is measured
in seconds.

(a) How long does is take the runner to complete one lap?
(b) What is the length of the track?
(c) At what speed is the runner jogging? [7 marks]

% Let f(x)=351n2(x—§)_

(a) State the period of the function.
(b) Find the coordinates of the zeros of f(x) for x €[0,27] .
(c) Hence sketch the graph of y = f(x) for x €[0, 2x], showing the

coordinates of the maximum and minimum points. [7 marks]

% The diagram shows the graph of the function f(x)= asin(bx). Find the
values of a and b.

(2,5)

[4 marks]

Long questions
Y

1. The graph shows the function f(x)=sin(x—k)+c. l/é\
(i) Write down the coordinates of A.

(ii) Hence find the values of k and c.

214  Topic 3: Circular functions and trigonometry © Cambridge University Press 2012.
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Find all the zeros of the function in the interval [-47,0].
Consider the equation f(x)=k with —0.5<k <0.

(i) Write down the number of solutions of this equation in the
interval [0,97].

(ii) Given that the smallest positive solution is o, write the next two
solutions in terms of d. [11 marks]

2. (i) Sketch the graph of y =tanx for 0<x <2m.
(ii) On the same graph, sketch the line y=m—x.
Consider the equation x + tanx = 7. Denote by x, the solution of this

. . . T
equation in the interval ]0,—[.

(i) Find, in terms of x, and &, the remaining solutions of the

equation in the interval [0,2m].
(ii) How many solutions does the equation x +tanx =7 have for x e R?

Given that cosA=c and sinA =s:

n T
(i) Write down the values of COS(E - A) and sin(E - A),

1
tanA’

T
(i) Hence show that tan(g — A) =
T 4
(iii) Given that tanA + tan(z - A) = N find the possible values of tan A .

(iv) Hence find the values of x €]0, %[ for which

T 4
tanA+tan(5—A):ﬁ, [16 marks]

3. Write down the minimum value of cosx and the smallest positive
value of x (in radians) for which the minimum occurs.

(i) Describe two transformations which transform the graph of
y=cosx to the graph of y= 2cos(x +§ .

T
(ii) Hence state the minimum value of ZCOS(X + g) and find the value

of x €[0,2n] for which the minimum occurs.

5
The function f is defined for x €[0,2] by f(x)=

2cos(x+§)+3

(i) State, with a reason, whether f has any vertical asymptotes.
(ii) Find the range of f. [13 marks]
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In this chapter you
will learn:

* how to solve equations
involving trigonometric
functions

* about relationships
between different
trigonometric functions,
called identities

* how fo use
identities to solve
more complicated
trigonometric
equations

® about relationships
between trigonometric
functions of an angle
and trigonometric
functions of twice that

Trigonometric
equations and
identities

Introductory problem

angle.
.:f 1} 3
(%
&
\
A Inverse  functions
Tl <1 and their graphs
E were covered in sec-
tion 4D.
Vi
1|
& < — : .
> 216  Topic 3: Circular functions and trigonometry
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The original Ferris Wheel was constructed in 1893 in
Chicago. It was just over 80 m tall and could complete one
full revolution in 9 minutes. During each revolution, how
much time did the passengers spend more than 50 m above
the ground?

Often, when using trigonometric functions to model real-life
situations we need to solve equations where the unknown

is in the argument of a trigonometric function; for example,
5sin{2x+1)=3 or cos2x —sin® x = —2. Because trigonometric
functions are periodic, such equations may have more than one
solution. In this chapter you will see how to find all solutions
in a given interval. You will also learn some trigonometric
identities - relationships between different trigonometric
functions — which can be very useful in transforming more
complicated equations into simpler ones.

Introducing trigonometric
equations

To solve trigonometric equations it is important that we can
‘undo’ trigonometric functions. If you were told that the sine of

1
a value is 2> you would know from section 8D that the original
T
value could be o but if you were told that the sine of a value

is 0.8 the original value would not be so easy to find. The answer

is given by the inverse function of sine, written as arcsinx or
in-1

sin™' x.

© Cambridge University Press 2012.
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The inverse function of cosine is denoted by arccosx or cos™ x,

and the inverse tangent function is arctanx or tan™ x. EXAM HINT
A —

~ Calculators

<\§ c t have
USUG“Y do no d

o button labelle

arcsin. Use the h

font button, W'h‘c
‘is usually Obti‘ﬂf
by pressin
and [sin J; similarly
for the inverse
cosine and tangent

functions.

e SN

Suppose we want to find the values of x which satisfy sin x = 0.6.
Applying the inverse sine function, we get x = sin ' 0.6; then,
using a calculator we find sin™'0.6 = 0.644 (3 SF). The sin™'
function gives us only one solution. However, from the graph
of y=sinx we can see that there are many x-values that satisfy

the equation (these correspond to the intersections of the curve
y=sinx and the line y = 0.6).

The solutions come in pairs — one in the green sections of the
graph and one in the blue sections. The sin™' function will
always give us only one solution: the one in the green section
closest to zero (x,). To find the solution x, in the blue section
we use the fact that the graph has a line of symmetry at x = U

S0 x, is as far below T as x, is above zero; in our example,

this means that x, = m — 0.644 = 2.50. Once we have this pair of
solutions, we can use the fact that the sine graph repeats with
period 27 to find the other solutions: x; = x; + 2 = 6.93, x, =
X, + 21 = 8.78, and so on.

EXAM HINT
N

~ |fyou have
fgound a value
ysing an in\{erse
tr'\gonometnc
jon an
f:;\:goto do furt‘her
calculations wit
it, save ’rhe\ vc\::;zrls
i calcy
‘rrr\\;/r?\\cj)rry and always
use the stored value
or the [ANS] button
in subsequent .
ations —
(t:\?c\acrc\)unded answer.
See Calculator Skills
sheet 1 on the
CD-ROM for how
to do this.

KEY POINT 9.1

To find the possible values of x which satisfy sinx = a:

o Use the calculator to find x, =sina.

e A second solution is given by x, = t—x; (or 180°—x,
if working in degrees).

e Other solutions are found by adding (or subtracting)
multiples of 27t (or 360°) to x, or x,.

© Cambridge University Press 2012.
~ Not for printing, sharing or distribution.

i



P(1H R
P (

In the International Baccalaureate you will only be asked to find
solutions in a given interval.

/
' Worked example 9.1
Find the possible values of angle #€[0°,360°] for which sin&=—-0.3.

. ® ;
Put the calculator in degree mode. * sin™(—0.3) = —17.5°

Look at the graph to see how many o {
solutions there are in the required

interval.

T 0
-0.3 \[

d
d

3

0 0 0, j

{
\
u
{
360° 4
g
3 &V ) There are two solutions. 3
-
] The second solution is given by 180°— 4. 180° - (-17.5°) =1975°
' !
<
The solution —=17.5° is not in the required ¢ 8 =1975° \
J interval, so add 360°. 6, = —175° + 360° = 542.5° 1
| AT IR0 R ]
\ - ),
%

EXAM HINT
N —

We can solve the equation cosx =k in a similar way.
ke

sure that you'
calculator is 1N the
cppropr'\ote mo e,
degree of FOCE\IOI'\,
as indicated in the

yestion. .
See Caleulator Skills
sheet 1 on the CD-
ROM for how fo set
the mode.

Y

T Ty €
27

The function cos™ k gives the solution x; in the green region
closest to zero. We use the symmetry of the cosine graph to
find x,: it is simply the negative of x,. Once we have this pair of

solutions, we can use the fact that the cosine graph repeats with

_ period 27 to find the other solutions.
D —
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KEY POINT 9.2

-
To find the possible values of x which satisty cosx = a: L‘\Am/nn\l
It is useful to
remember thq* the
first two positive
solutions will be
cos'aan

9m—cos A

e Use the calculator to find x;, = cos™a.

e A second solution is given by x, = —x,.

e Other solutions are found by adding (or subtracting)
multiples of 27 (or 360°) to x; or x.,.

—4 0

T

B
|

Worked example 9.2 {)

kS . . 2
% Find the values of x between —mt and 2n for which cosx = R

Sketch the graph. <*

s 2w
Note how many solutions there are. S There are 3 solutions :a 14
p
S* 2 i { a
cos *‘Q is a value that we should X, = cos™ £ =— y 3
2 2 ) 4 )
know. s
; ]
Use the symmetry of the graph to find «* x,=-= 1 -1
the other solutions. 4 1 Vs
X, =2n- 2= n J
° 4 4 . |
ool e fA-f-—‘-'“w-\*‘p___,_, f"“ Y T
\ Y.

It can be difficult to know how many times to add or subtract "
27 to make sure that we have found all the solutions in a given
interval. Sketching a graph can help, as we can then see how
many solutions we are looking for and approximately where
they are. A good rule of thumb is that, apart from maximum
and minimum values, there are two solutions within each
period for sin and cos.
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Sketch the graph. o

@
Note how many*®
solutions there are.

()
cos ! on the calculator®
&y will give the first value
of x.

{ Use the symmetry of
the graph to find the
other values.

™ i D {T

0.8

4 solutions

X, =cos'0.6=0.644 (5 SF)

X, = 21— 0.644 = 5.64 (35F)
Xy =X, + 21 = 6.93 (35F)
X, =X, + 20 =119 (35F)

4T

PI Worked example 9.3

] Find all the values of x between 0 and 4m for which cosx =0.8.

8 - it
PO G A A Senaa A Aeeeabta, | L A saan A A —

-—‘ﬁf"--‘\.,‘.m__.__ "W\MN_,J"—‘%MJJ

The procedure for solving equations of the type tanx =a is

slightly different because the tangent function has period ©
rather than 2. It is best understood by looking at the graph of

| y / | |
A/ | | . the tangent function.
— e 2 KEY POINT 9.3
'
o
220 Topic 3: Circular f;{ngtions and triggnom?tr.y vy

To find the possible values of x which satisty tanx =a:

e Use the calculator to find x, =tan!a.

e Other solutions are found by adding (or subtracting)

multiples of T (or 180°).

© Cambridge University Press 2012.
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Find all real values of x €[—m,37] such that tanx =2.5.
()
Sketch the graph. ® ‘ ‘ ‘ ‘
a4 3 3
= — = —
-7 1 3 3 3 3
Note the number of There are four solutions.
solutions.
()
Use a calculator to find ® x,=tan'25=119
tan-'.
. [
The other solutions are® X, =x+n=433
found by adding or Xy =X, + =747
subtracting 7. X, =x —n=-195
f..-..p»—-r H“'-.._.M-«'""M&“ FM.H'J/-A\MH

N\

. 8 P "
LI—-\..-..—\.‘— “‘“‘-‘hq_..q_,‘_q_\‘-' e VP W % Mea-

. Exercise 9A

1. Use your calculator to evaluate the following in radians,
correct to three significant figures.

(a) (i) cos10.6 (ii) sin™ (0.2)
(b) (1) tan’l(—3) (ii) sin’l(—0.8)

%\ 2. Evaluate the following in radians without using a calculator.

(a) (3) sinl(%) (ii) cosl(gj

N oo
(b) (i) tan'(=/3) (i) cos ( ﬁ)
(o) (4) sin’l(—l) (ii) tan™ (1)

- ©Cambridge University Press 2012. 9 Trigonometric equations and identities
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(a) (i) sin™'0.7
(b) (i) cos™*(-0.62)
(¢) (i) tan'6.4

4. Find the value of
(a) (i) sin(sin™'0.6)
(b) (i) tan(tan™'(-2))

N |
(a) (i) sinx= 5
; _1
(b) (i) cosx= 5

N N3
(¢) () sinx= 5

(d) (i) tanx=1

: _V3
(a) (i) cosx= 5

| =

(b) (i) cosx=—
(c) (i) sinx =

(d) (i) tanx =

ﬁd’_‘ l\)|ﬁ|m

- -~ Dy oA n b

3. Evaluate the following, giving your answer in degrees
correct to one decimal place.

(ii) sin™' 0.3

(ii) cos™'(—0.75)
(ii) tan™'(-7.1)

(ii) cos(cos™(—0.3))
(ii) sin(sin™'(-1))

iy 2
ii) sinx =—
(ii) 5

(ii) cosx =

ii) sinx =—
(ii) 5

B

2
1

W

(ii) tanx = NE)

.. 2
ii) cosx =—
(ii) 5

J3

ii) cosx=———
(ii) 5

iy 3
i) sinx =—
(ii) 5

(ii) tanx=-1

(¢) (i) tan €=§ for 0°< @<720°

4
(ii) tané@= 3 for 0°<H<720°

© Cam_b idge University Press 2012.
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5. Find the exact values of x between 0° and 360° which
satisfy the following equations.

7. Solve these equations in the given interval, giving your
answers to one decimal place.

(a) (i) sinx=0.45 for x €[0° 360°]
(ii) sinx =0.7 for x €[0° 360°]

(b) (i) cosx=-0.75 for —180° < x <180°
(ii) cosx =-0.2 for —180° < x<180°

6. Find the exact values of x between 0 and 2m which satisfy
the following equations.

\THY |
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(d) (1) smtz—g for t €[-180°,360°]
1
(ii) sintz—z for t €[-180°,360°]

8. Solve these equations in the given interval, giving your
answers to three significant figures.

@ (@) cost=§ for t €[0, 47]

2
(ii) cost= 3 for t €0, 4m]

(b) (i) sin&d=-0.8 for fe[-2m, 21]
(i) sin&=-0.35 for fe[-2m, 21]
© () tand= —% for —m< @<
(ii) tan@d=-3 for —-k<E<T
(d) (i) cos#d=1 for £<|0, 4]
(ii) cos@=0 for #el0, 4m]

9. Solve the following equations in the given interval, giving
exact answers.

1
(a) (i) sinx= 3 for —360° < x <360°
iy 2 o o
(ii) sinx= - for —360° < x <360

(b) (i) cosx=-1 for —180°<x<180°
(ii) sinx=-1 for —180° < x <180°

(¢) (i) tanx= J3 for —360°< x < 0°
(ii) tanx =1 for —360°< x <0°

(d) (i) cosx= —g for —360° < x <360°

3
(i) cosx = 5 for —360° < x <360°

10. Find the exact solutions of the following equations.
1
(a) (1) cosé= 2 for 2n< @<2m

3

(i) cosd=— for —2m< #<2m

$|N

(b) (i) sinfd=-—— for —-T<H<37

(ii) sinf=—— for —m< &#<3mn

M§|N
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(c) ()

(i)
(d) ()
(ii)

() (1)

(e) sind=

1
tanfd=——— for -n<f<n

3

tan@d=-1 for —-n< <™
cos@=0 for 0< &< 3m
sind=0 for 0< #<3m

1
for 21 < 8<0

2

11. Solve the following equations:

2sin@+1=1.2 for 0°< &< 360°

(ii) 4sinx—+3=2 for —90° < x <270°
1
(b) (i) 3cosx—1=— for 0<x<2m
(ii) 5cosx+2=4.7 for 0<x <27
(¢) (i) 3tant—1=4 for —-T<t<T
(ii) 5tant—3=8 for 0<f<2m
Find the exact values of x € (—7,T) for which
2sinx+1=0. [5 marks]
')
sin™! x
Show by a counterexample that tan™' x # .
costx

m Harder trigonometric equations

In this section we shall look at two kinds of trigonometric
equations that are more difficult to deal with: equations that
need to be rearranged first and equations in which the argument
of the trigonometric function is more complicated.

The previous section showed how to solve equations of the form
‘trigonometric function = constant’ It is not always obvious
how to write an equation in this form. There are three tactics
which are often used:

See chapter 3 for a
reminder on dis-

] guised  quadratics <]

= and solving equa-

tions by factorising o look for disguised quadratics

e take everything over to one side and factorise

Section 9D covers e use trigonometric identities.

I: how to use identities I:
to solve trigonomet-
ric equations.
P —
' 224
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In the next example we need to use factorising.

F

S——

™ i

Give answers correct to one decimal place.

()
First, find the possible values of cos &.

Remember + signs when taking the

Sketch the graph

square root.

to see how many *

solutions there are in the required

Solve each equation separately. ®

inferval.

@
List all the solutions. ®

o

© Cambridge Uni\llfgcsify Press 2012.

~ Not Fo printing, s
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4 2
cos? 8= —:>coet9=i5

EXAM HINT

cos?¢ means (cos 49)2.

Y=

2 solutions for each of i%.

When cos &=

2
3

cos™ (%) =48.2°

G=482° or 560°—-46.2°=311.6°

When cos &=

cos™ (—g) =
3

f=131.8° or 360° —131.6° =226.2°

6 =482°
8, =131.8°
8, =228.2°
8, = 311.8°

9 Trigonometric eqtipﬁong‘pnd _identitjgs 2828 _

131.8°

360°

PSS Py Y
“x.a._‘—“"“““-_..-hq.\__“x;/ e e M

- e pro-
Ao .‘M“_ A P B S OV A AL

B SNV PNy j/ ‘NM*__PJ

; b

ry /i
Worked example 9.5 (4

4
Solve the equation cos? #= 5 for #€[0°,360°].

1
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P[ Worked example 9.6

/ Solve the equation 3sinxcosx =2sinx for —-t<x <.

The equation is not in the form ‘trig function =* Bsinx cosx —2sinx =0
constant’, so we cannot take the inverse & sinx(3cosx —2)=0
directly. However, both sides have a factor
of sin x, so we can rearrange the equation
so that the RHS is zero and then factorise
the LHS.

If a product is equal to O, then one of the sinx=0 or cosx= 2

factors must be 0. J

- ,

Now solve each equation separately. ® When sinx = 0:
Sketch the graph for each equation to see sin"0=0

how many solutions there are.

EXAM HINT
iy ') Do not be tempted to divide both

8

Py e
B MM“ a a.,"""““‘“"-—..—t-q__u“h e e et e ot A A e e e e s o A A e Mo

sides of the original equation by sinx
as you would lose some solutions
¢ (the ones coming from sin x = 0).

P x=0o0r i-0O=TorO—TN=—T
' 2

7 When cosx =—:

¢ 5

[ B cos™ (%) = 0.841

' %
d\.u
x
- o P
21 —0.641=5.44 is not in the interval,
7 but 5.44 — 21 = —0.841 is in the interval.
()
We have found five solutions. * X=-T, —0.84,0,0.841, Tt
{ T TN e WO JI“»M

) <—
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Check these solutions by looking at graphs on your calculator.

If you plot the graphs of y =3 sinxcosx and y=

2sinx on the

same set of axes over the given interval, you will see that they

intersect at five points.

y = 3 sin(x)cos(x)

y =2 sin(x)

™

-7

Another common type of trigonometric equation is a disguised

quadratic.

Worked example 9.7 :

(a) Given that 3sin? x —5sinx +1=0, find the possible values of sin x.
(b) Hence solve the equation 3sin*x —5sinx+1=0 for 0 <x <2m.

Recognise that this is a quadratic ®
equation in sinx. Since we cannot
factorise it, use the quadratic formula.

Sketch the graph of sinx to see®
how many solutions there are to
sinx=1.434 and sinx =0.2324.

sinx is always between -1 and 1, so"
only sinx=0.2324 has solutions.

()
Solve this equation as before.

-

B+ 52 -4 x3x1
2X5

sinx =1434 or 0.2324

(a) sinx =

1.434

N

0.2324

A
=

27

There are two solutions in total.

sinx = 1434 > 1is impossible.
Hence sinx = 0.2324

Py

(b) sin(0.2324)=0.235
x=0.235 or T —0.235 = 2.91

R Hf-—._r—-‘mnw_‘“_‘»'\fr‘me» oo

L L . TP A et A Aoty A N a0 A e e Ve

e

A

i

\
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EXAM HINT

Questions like the one in Worked example 9.7 force you

to use algebraic methods to solve the equation, but you
should still use a graph on your calculator to check your
solution. If the question did not include part (a), then you
could solve the equation directly using your GDC, without
any algebraic working.

Next, we look at equations where the argument of the
trigonometric function is more complicated than just x. For the
equation sinx =0.6 with 0<x <27, we can see from the graph
that there are two solutions.

Y
i

y =sinz

-0.6

2

Now consider the equation sin2x =0.6 for 0 < x <2m. From the
graph we can see that there are four solutions.

B 1

Yy = sin 2x
Ui Notice this is the -0.6 /
<l graph  of  sinx g:]
squashed by a -
3 factor of 2. See ! 2 s 4
- . section 5B.

2w

We need to extend the methods from section 9A to deal with
7 (. equations like this. A substitution is a useful step in converting
such an equation to the form ‘trigonometric function = constant’

B

BT -
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Write down the equation ®
to be solved.

Rearrange it into the ®
form sin(A)=k.

Make a substitution for ®
the argument.

Rewrite the interval in*®
terms of A.

Solve the equation for A.*

@
Transform the solutions ®
back into x.

N

h . n il ; i Y n

Bsin(2x)+1=0

1
o sin(2x)=——

Let A=2x

xe[0,2n] < A€[0,4r]

1
SiNA=——

Ao A AAZ/\A:&

I\

ry /i
Worked example 9.8 (4

Find the zeros of the function 3sin(2x)+1 for x €[0,27].

b

@i

There are four solutions.

Ao =sin’ (—%) =-0.2398& is outside of the interval.

A=T—A, =348
A, = A, + 21 =D5.943
A, = A +21=9764
A, =A, +21=1223

A

xX=—

2
=174,2.97, 488,61 (3 SF)

\.“MM‘MWN.“' Jr‘

dm

"'MAAA.AA\,A P ""“"l—-a....,a_n..-‘ _f-___,u..__‘_‘h‘h\. pu——y -‘\—shg_‘h\.“‘“‘"‘_" vy
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This procedure can be summarised in the following four-step process.
KEY POINT 9.4

To solve trigonometric equations:

1. Make a substitution for the argument of the
trigonometric function (such as A = 2x).

2. Change the interval for x into an interval for A.

Solve the equation for A in the usual way.

, 4. Transform the solutions back into the original variable.

&

The following example illustrates this method in a more complicated situation.

Worked example 9.9

Solve the equation 3cos(2x+1) =2 for x €[-n,w].

o

Write the equation in the * cos{2x+1)= 2
form cos(A)=k. E
Tol °
S Make a substitution for the ® Let A=2x+1
\ argument.

Rewrite the inferval in*® —n<x<m

terms of A. o 2rn<2x<21n
& 2n+H1<2x+1< 27 +1
So Ae[—2R+1,2r+1]

2
Solve the equation for A. <* cos A= 5

= - A, Ay Az A
H
B

1-27 1+2m

There are four solutions:
A =cos™ (%) =0.641

A, =—A =—0.841

L
wito
“‘\-u-q.., Ay oM
A A R T W . PGNPV W YGOSRV W Math

As = A, + 21 = 544
7 A, = A+2m=712
. A—1
0 Transform the solutions back «* x= = —0.0795,2.22,6.2035,-0.921
into x.
\ INTO X r‘”rh”‘_&,p' AMJ“A PP ij‘m.m,_‘w‘,lj

iy i .
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In the next example we revisit the tangent function, working in DA
degrees and finding exact solutions.

Worked example 9.10

1
Solve the equation 3tan(5 &° - 30°) =/3 for 0< < 720.
. L
> il 2
Rearrange the equation ® 1 J3 ) e
; tan| —@°—30° |=—=—
into the form tan(A)=k. > z /> )
o .o. 3
Make a substitution for A lgo 0P y
the argument. 2 £
{
o §
Rewrite the interval in*® 0< <720 ;
terms of A. 1
© 0<—-0<360 J
2 1 .
<:>—5OSE(9—5OS550 :‘ :-'
© —30°< A< 330° 4;
Solve th tion for A.** tanA=—= ; 3
0\{e e equation for A. NG I
—= is one of the exact
V3 y
values from Section 8D. X , , J
| | {
| | }
4
I | i
I I é
: : 4
1
—1v I I ;
| |
A i p i Lo )
| | /
/ : : J
| |
| |
l l d
I I é
—30° ! ! 330° $
{
There are two solutions: £
1
A =tan’| ——= | =30°
()
A, = A +180°= 210°
|
. ) o o j
Transform the solutions 8°=2(A+30°)
back into 4. g=120° or 480° J
f«nl‘—‘—l‘ﬂsq\,_‘*‘#“‘f‘f-—tw__’_" JI""M.A-...,“V_‘J
J
A - © Cambridge University Press 2012. 9 Trigonometric equations and identities 231 _
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& . Exercise 9B

1. Solve the following equations, giving your answers to 3
significant figures.

(a) (i) tan’x=2for -R<x<T
(ii) sin?x=0.6 for —-A<x<T
(b) (i) 9cos*@=4 for 0°< @< 360°
(ii) 3tan?&=5 for 0° < #<360°

2. Without using graphs on your calculator, find all solutions
of each equation in the given interval. Use graphs on your
calculator to check your answers.

(a) (i) 3sinx—2sinxcosx =0 for 0°< x<360°
(ii) 4cosx—sinxcosx =0 for 0° < x <360°

(b) (i) 4sin?@=3sind for de[-m, 1

: g (ii) 3cos?@=—cosd for fe[—n, 7|

(¢c) (i) tan?’t—5tanfi+5=0 for t€]0,2m|
(ii) 2tan’?t+tant—1=0 for t €]0, 27|

(d) (i) sin#tan ¢9+%tan¢9: 0 for #€[0, 2m]
(ii) 2cos@tan@—3cosd=0 for £<|0, 2m|

(e) (i) 2cos’x+3cosx=2 for 0°<x<180°

(i) cos>x—2cosx =3 for 0°< x<180°

3. Solve the following equations in the given interval, giving
| B your answers to 3 significant figures.

(a) (i) cos2x= 3 for 0° < x <360°
(ii) cos3x= % for 0° < x <360°
(b) (i) sin(3x-1)=—0.2 for 0<x<T
(i) sin(2x+1)= % for 0<x<2m
E (c) (i) tan(x—45°)=2 for —180°<x<180°

(ii) tan(x+60°)=-3 for —180° < x <180°

% 4. Find the exact solutions in the given interval.

1
(a) (i) sin2x=— for 0<x <27
2
1
(ii) sin3x=—5 for 0<x<2m

232 Topic 3: Circular functions and triggnom?tlﬁy._. T © Cambridge University Press 2012.
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2
(b) (i) cos2x= —g for 0° < x<360°
1
(ii) cos3x= 3 for —180°< x <180°

(o) () tandx=+/3 for 0<x<m

1
(ii) tan2x=—F for 0<x<m
J3

% 5. Find the exact solutions of the following in the given interval.

(a) (i) cos(x+60° )_ﬁ for 0° < x <360°
(ii) cos x——)=— for -n<x<m
(®) (@) n(x )——— for -t<x<m
(ii) sin(x—120°)=—% for 0°< x <360°
(c) () tan(x+§)=1 for 0< x <21
(ii) tan(x—§)=—1 for 0<x<2m

@ a Solve the equation 3cosx =tanx for 0 < x <2m. [8 marks]

(a) Given that 2sin? x —3sinx = 2, find the exact value
of sinx.

(b) Hence solve the equation 2sin* x —3sinx = 2 for
0< x<360°. [6 marks]

B Solve the equation sinxtanx =sin’ x for -t <x<m. [8 marks]

. . . L 1
f g Find the exact solutions of the equation sin(x?) = — for
—T<x<T. [5 marks]

Trigonometric identities

We have already seen one example of a trigonometric identity:
sinx

= tanx. The two sides are equal for all values of x (except
cosx

when cosx =0 and tanx is undefined). There are many other
identities involving trigonometric functions, and we will meet
some of them in this section.

A A © amb;_dge University Press 2012. 9 Trigonometric equgtiﬂsipnd identities
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Ccos T

sin x

EXAM HINT

The identity symbol = means that the equality holds for all

: . sinx
values of the variable(s). Many people write
c

emphasise that the statement is an identity (true for all values
of x) rather than an equation (true only for some values of
x, which need to be found). However, the IB syllabus and
most exam questions use the equals sign in identities, so

we will do the same in this book, except where there is a
possibility of confusion.

Consider again the unit circle diagram, with point P
representing number x. According to the definitions of the sine
and cosine functions, AP =sinx and BP = OA =cosx.

Note that the triangle is right-angled, with hypotenuse 1,

Worked example 9.11

between sine and cosine.

KEY POINT 9.5
Pythagorean

identity:

sin?x+cos’x=1

so using Pythagoras’ Theorem we get the following relation

[

‘H
: 1
) Given that sinx = 3 find the possible values of cosx and tanx.
] . . . . . .“ 2 2 <
B Think of an identity relating sin and cos. gin®x + cos” x =1 ¢
4 Put in the known value. 1V y
! (—) +cos? x =1 ‘}
Y )
“- . . o 2 1 & 2
I Find the value of the other function. ® cog® x=1-—= 5 {
B Remember + signs when taking the \
L square root. oS X = i\/g = i& J(.
- € B 4
I
o. sinx ;
We know how to find tan given sin* tanx = g
. c05 X
and cos. 1 7
3 2 1
o =] S =+= b
2 stanx —E-i7 }
+2 ~
: 4
”I. ol j-ﬁ_’—'»f‘»—‘nmm_ﬁ“-" _f/—“--.u-_&__‘»_‘J
. W,
i) <
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We have already seen examples where the values of sinx

and cosx were used to find the value of tanx. Using the
Pythagorean identity, we only need to know the value of one of
the functions to find the values of the other two.

Notice that for a given value of sin x, there are two possible
values of cosx. The circle diagram makes this clear: points P’
and P” are the same distance, namely sin x, above the horizontal
axis, but have different values of cosx (equal in size but
opposite in sign).

Notice also that we do not need to know what x is to find the
possible values of cosx given sinx (and vice versa). However
by restricting x to a particular quadrant we can select one of

the two possible values.

Worked example 9.12

sin x

P/

sin x

COS Ty COoS T

T
If tanx=2 and 5 < x < T, find the value of cos x.

We need a relationship between cosx and tanx.*

The only two identities we know so far are

=tanx. We can substitute

sin?x + cos?x =1 and
cosX

sinx from the second identity info the first.

-

cos X
= sihx =tanxcosx

So the Pythagorean identity
becomes

tan? xcos? X + cos? x =1

<
4
i
{

POV

\
. . ."I 22 cos” x+cos” x =1 )(
Now put in the given value of tanx. y
S 5cos” x =1 i
B
S cosx = i£ "t
) i
> :
We are told that x is in the second quadrant, so cosx < cosx <0 k!
is negative. . V5 3
SLCOBX = ——— 4
e AN nad
. Exercise 9C
1. Find the exact values of cosx and tanx given that
N 1 SR 4
(i) sinx= 3 and 0°<x<90° (ii) sinx= z and 0° < x < 90°
235
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2. Find the exact values of sin# and tan# given that
1
(i) cos@= -3 and 180° < #<270°

(ii) cos@= —% and 180° < #<270°

3. (a) Find the exact value of cosx if

1 T
(i) sinx=—and —<x<T
5 2
1
(ii) sinx=-—— and 3 <x<2m
2 2
(b) Find the exact value of tanx if

3 T
(i) cosx=—and——<x<0
5 2

B T 37
(i) cosx=—land —<x<—
2 2

4. (i) Find the possible values of cosx if tanx = %

(ii) Find the possible values of sinx if tanx = —%.

5. Find the exact value of:

(a) 3sin’x+3cos’x (b) sin?5x+ cos?5x
2
(c) —2co0s?*2x—2sin?2x (d) 2tan®2x—
’ cos?2x
1 1 3 3
() ———— H ——
sin“x tan’x 2sin“4x 2tan®4x

6. (i) Express 3sin’x+4cos?x in terms of sinx only.

(ii) Express cos?x —sin?x in terms of cosx only.

(a) Express 3—2tan’x in terms of cosx only.

2
. (b) Express w in terms of sinx only, simplifying
= cos? X
" your answer as fully as possible. [7 marks]

e If t = tanx, express the following in terms of t:
+1

(@) cos’x (b) sin®x (c) cos?x—sin*x (d) —
sin? x
- [8 marks]

> - EB) Using identities to solve equations

Z We can use trigonometric identities to solve more complicated
sinx

equations. Usually we start by replacing tan x by
y cosx
Nl the Pythagorean identity. The latter can only be used if the equation

contains squares and typically results in a quadratic equation.

or by using

236 Topic 3£.Circu:!ar fq.n;_:tions and triggnom?tr-y;. 7 - . Cc:m_b;id,.Eniyersiiyg.q?s;bZQLZ. Jooadede
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Worked example 9.13

Solve the equation 4sinx = tanx in the interval 0 < x <2m.

sinx

The applicable identity here is the one for tan. ¢ 4oinx = .
co0%

To eliminate fractions, multiply both sides by cosx. & A sinycos X = sinx

Both sides contain sinx, so rearrange the equation & 4sinxcosx —sinx =0

to make one side zero and factorise. o sinx{4cosx—1)=0

1
One of the factors must be equal to zero. sinx =0 or cosx = 7

Now solve each equation separately. When sinx = O:
x=0, T 21
1
When cosx = —:
4

1
X=cos (Z) =1.32(35F)

or x=2n—132 = 4.97(35F)

S x=0,122, 1, 497,21

N
o -~ Avsenay YO
(WY TSy W )

@
List all the solutions. ®

L A - P PN ~——— o . .

.

The next example shows how using the Pythagorean identity
can lead to a quadratic equation. You could solve the resulting
equation using a graph on your calculator, but the question may
require you to use an algebraic method, for instance by asking
you to find possible values of cos & first.

Worked example 9.14

Find all values of & in the interval [-180°,180°] which satisfy the equation 2sin? #+3cos&=1.
1
The equation contains both sin and ¢ 2(1-cos? 8)+3cos f=1 1
cos terms. The sin term is squared, so & 220052 B+ Bcos f=1 1
replace sin?8 by 1-cos?d. ;'
* ]
This is a quadratic equation in cosé. & 2¢05” @—3c058—-1=0 va
Write it in the standard form and then cos8=178 or —0.281 ‘
solve it. 1
o
—

© Cambridge University Press 2012. 9 Trigonometric equations and identities 237

Lk — i i __' 1 ﬂ.l

~ Not for printing, sharing or distribution.
- [} Lot

P(d)
3-!' "{ |



) R e s

continued . . . ‘
[ )

cos values must be between —1and 1.° cos =178 is impossible

S0 cos@=—-0.281

1.78

SN/
T\

—180° 180°

There are 2 solutions.
6 =cos(—0.281) =106°
560° —106° = 254° is not in the interval.

The second solution is
8, =254° - 2360° = -106° R
P e P s 2 a ) Jr e

p—

sin x

1. By using the identity tanx =
equations.

(a) (i) 3sinx=2cosx for 0° < x<180°

(ii) 3sinx=5cosx for 0° < x<180°

, solve the following
CoS X

oL
(b) (i) cosx=3sinx for OSXSE

(ii) 3cosx=-sinx for 0<x<Tm

(¢c) (i) 3sinx+5cosx=0for 0<x<T
(ii) 4cosx+3sinx=0 for 0<x <27

(d) (i) 7cosx—3sinx=0 for —180°< x<180°
(ii) sinx—5cosx =0 for —180° < x <180°

2. Solve the following equations in the given interval, giving
exact answers.

T
(a) (i) sin38=cos3d for 0< < )
(ii) sin2t= J3cos2t for te [0, ]
(b) (1) sin2x++/3cos2x=0 for 0< x<2x

T
(ii) sin3a+cos3a=0 for ae [0,5]

- . 8 !"I}ipic ?:;'Eircuiqr ﬂq‘lgﬁons and fri@nomi[.pyl. oox © Cambridge University Press 2012. 2 el
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3. Use trigonometric identities to solve these equations. B [ -
(Do not use graphs or the equation solver function on

your calculator.)

T2
S X _ 0 for 0°< x <360°

(a) sinx+
cosx
(b) 3sin?x =2sinxcosx for x €[-T, ]
cosd
(0 —
sin

(d) 3cos?f+4sinbcos@=0for 0<H<2n

—2=0 for #€[-90°,90°]

_L‘(J

4. Use the identity sin’ x+cos” x =1 to solve the following
equations in the interval [0°,360°].

(a) (i) 7sin?x+3cos’x=5 (ii) sin?x+4cos?x=2

(b) (i) 3sin*x—cos?x=1 (ii) cos*x —sin?x=1

Use an algebraic method to solve the equation
5sin? @=4cos* & for —180° < #<180°. [4 marks]

% B Solve the equation 2cos*t —sint —1=0 for 0<t <2x. [4 marks]

[ ) Solve the equation 4 cos? x —5sinx —5=0 for x €[, ®].
[4 marks]

9 Given that cos? t + 5cost = 2sin? t, find the exact value of cost.
[4 marks]

g (a) Given that 6sin? x + cos x = 4, find the exact values of cos x.

(b) Hence solve the equation 6sin*x +cosx =4 for
0° < x <360°. [6 marks]

(a) Show that the equation 2sin* x —3sinxcosx +cos* x =0
can be written in the form 2tan?x —3tanx+1=0.

(b) Hence solve the equation 2sin* x —3sinx cosx +cos’ x =0,
giving all solutions in the interval -t <x<m.  [6 marks]

Double angle identities

This section looks at the relationships between trigonometric
functions of a certain argument and trigonometric functions with
double that argument.

J
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Working in radians, use your calculator to find
sinl.2 and sin2.4
cosl.2 and cos2.4

Are there any rules that relate sin2x and cos2x to sinx and
cosx? At first glance it may appear that there is no connection
between the values of trigonometric functions of an angle and
those of twice that angle. To try to discover any relationships
that might exist, a sensible starting point would be the familiar
right-angled triangle containing the angle x. We are interested
in the angle 2x, which can be formed by adjoining an identical
right-angled triangle as shown below.

I

[S1S)
[SIS)
L=}

First consider the whole isosceles triangle. Using the formula
If you have not seen

1 .
]> this formula before, I> Area = Eab sinC, we find:

you will meet it in 1
Area = B p*sin(2x)

chapter 10.
We can also calculate the area from the base and the height of
the triangle (Area = %bh). To find the height h and the length of
X the base b, look at one of the right-angled triangles with angle x.
L We have
] f h
B —=cosx = h=pcosx
p
B ki
3 2 =sinx = gq=2psinx
R - p
So another expression for the area of the triangle is:
z Area:%(Zpsinx)(pcosx)
= p*sinxcosx
7l
P <—
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Comparing the two expressions for the area, we get
EXAM HINT
B —
You will often see

. . o N . d fan
and rearranging this equation gives the double angle identity sin, €03 qn\ of
for sine. of a multip'e

1
Epz sin(2x) = p?sinxcosx

x written without

brackets: sin 2x,
KEY POINT 9.6 05 5%, efc.

sin(2x) =2sinxcosx

Although x was assumed to be an acute angle in our derivation
of this formula, the identity actually holds for all values of x.

Working from the same triangle, it is possible to find a double
angle identity for cosine:

cos(2x) =cos?x—sin’x

Substituting sin®* x =1—cos? x or cos* x =1-sin’x in this
formula gives us two further ways of expressing the double
angle identity for cosine.

KEY POINT 9.7

2cos?x—1
cos(2x)=41—2sin?x

cos? x —sin? x

One application of double angle identities is finding the exact
values of half-angles.

) 48
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P Worked example 9.15

Vi - = 7 i ¥ E J E ” v J .3 Al s ] | "
(| - - , ~ el ;

. . 2—+/3
7~ Using the exact value of cos30°, show that sin15° = 4\/_.
We know that c0s30°= 2, and d fo relate® “
e know that cos =——, and we need fo relate Using cos(2x)=1-sir? x: <
this to sinl 5°. . o y
Since 30 = 2 x 15, the obvious choice is the cos(2 X 15°) =1-2sin* 15 1
cosine double angle identity that involves sine: c0530° = 1—25in? 15° (:
cos(2x)=1-sin?x. J3 1
Using cos30° = —: {
2 1
£=1—29in215°
2 4
&3 =2—4sin? 15° i
o 4eir215° =23 )
— {
<=>6iﬂ215°=2 V3 1
{
5
We have to choose between the positive and * 2-3 |
) ) p ; . sosin1sl = (as sin15° > 0) J
negative square root. Since 15° is in the first 4 J
quadrant, sinl5°>0 and so we take the \
positive square root. ‘;
K ‘“‘P_A‘r"“"\mt“—\p..f »f f‘"“.mHHP‘J

In chapter 15 we
will see how double

]> angle identities can ]>

be used to integrate
some trigonometric
functions.

Worked example 9.16

Find an expression for cos4x in terms of

(b) cosx

Double angle identities are also very useful in proving more
complex trigonometric identities and solving equations.
Although they are called double angle identities, these formulas
can be applied to any multiple of an angle.

(a) cos2x

Notice that 4x=2x(2x), so one of the cosine '..
double angle identities seems suitable.
Since we want an expression involving
only cos, the most appropriate formula is
cos(2x) = 2cos?x — 1, with x = 2x.

(a) Using cos(2x)=2cos? x —1:
cos(2(2x)) = 2cos? (2x) — 1

cos(4x)=2cos? (2x) -1

O e e WV WO

{
|
|
!
:.
|
|
i
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continued . .. i
Can we use the answer from the part (i)2 Yes - (b) From part (i), ‘%

we just need to replace cos(2x) in the previous cos(4x) = 2c06? (2x) 1 >
result with an expression involving only cos x. = 2(2c08% X — 1) —1 ij
Replace cos (2x) in the answer to part (a) with an (as cos(2x) = 26087 x — 1) 3
expression involving only cos x. ]

EXAM HINT

In the exam, any equivalent form of the answer would be acceptable; therefore,

unless explicitly asked to do so, you need not go any further than this, for example by
expanding the brackets.

\ v

Recognising the form of double angle formulas can be helpful in
solving trigonometric equations.

Worked example 9.17 '

08§

Solve the equation 6sinxcosx =1 for -t <x <.

{ V)
To solve this equation we need to rewrite o Gsinxcosx =1
it in the form ‘frigonometric function = ‘ 1 =
, & Z2sinXxcosx = —
constant’. 3 {
Here the sinx cosx ‘ 1 . ' )
on the LHS should remind us of the & sin(2x) = z (as 2sinxcosx = sin(2x))
sin(2x) identity. 2
'. Let A=2x )

Now we can follow the *
standard procedure.
First, make a substitution for the

—M<X<TT & 2N<AL2ZH

g

y = sin(A)

argument.
Sketching the graph, we see that there /\ . /\ /

are 4 solutions in the given domain. A : I\ A

—27 27

sin™ (1] =0.2398
3

s0 the 4 solutions are
A=0.25398,2.8602, —5.943, — 3.451
and hence

x=0.170,140, - 2.97, =174 (3 SF)
PRy S e pa P J’ P VW

WS

e
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-© Cambridge University Press 2012. 9 Trigonometric equations and identities 243
* Not for printing, sharing or distribut e A



3
k. /

=

F L’ﬁ P

I"__. AL Wiy V- P i -_. ' “5 - o .‘. -:"_1.' . a

If an equation contains both cos2& and cos &, we need to use
identities to turn it into a quadratic equation involving only cos &.

Worked example 9.18

T Solve the equation cos2x = cosx for 0°<x <360°.

We need to write the equation in terms of only one *® cos(2x) = cos x
trig function. (Watch out: cos2x and cosx are not > 2005% ¥ — 1= cos X
the same function!)

Use the identity for cos(2x) that involves just cosx.

(as cos(2x)=2cos? x — 1)

e fae A e aa A

Recognise this as a quadratic equation in cosx. Try* 2¢08* x —cosx —1=0
to factorise. (2cosx+1)(cosx—1)=0 ‘L
1 {
cosx=——or cosx =1 E
2
1 <
Solve each equation separately. «* When cosx = —5 i
x =120° or 360° —120° = 240° {
When cosx =1: {L
x=0° or 360° «;
!
List all the solutions. * x = 0°,120°, 240°, 360° d
\ e et s 2 A v rA‘“‘““‘»@W“IJ
We can use the double angle identities for sine and cosine to derive a double angle identity for the
. 2tanx
tangent function, tan 2x = ———.
1—tan’ x

Worked example 9.19

Express tan2x in terms of tanx.

{

: . : : o in2 {
First, write tan 2x in terms of sin2x and cos 2x. tan2y = 202X ;f
c052X ]

_ 2sinxcosx 3

c05? X — 5in® X <

‘ (as cos(2x) = cos® x — sin’ x) 1

. . ° Dividing top and bottom by cos”® x: ‘:

Then, express in terms of sin x and cosx by , <

. . . . sinx {
using the sin and cos double angle identities. 2 coex) ;f
We have to decide which of the tan2x = oy {

cos2x identities to use. If we use T od? x d

cos(2x) = cos?x — sin2x, we can divide through So B J
by cos?x to leave 1-tan?x in the denominator. A 25 = 1—tam? x d
4

\ e s e R s D
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. Exercise 9E

1. (a) (i) Given that cos@= —i, find the exact value of

cos26.

2
(ii) Given that sin A =——, find the exact value of
Ccos2A. 3

1 i
(b) (i) Given that sinx=—and 0<x< > find the exact

value of cosx.

3 I8
(ii) Given that sinx== and 0<x< > find the exact
value of cosx.

1 T
(¢) (i) Given that sinx=— and 0<x< > find the exact
value of sin2x.

3 I8
(ii) Given that sinx = B and 0<x< > find the exact

value of sin2x.

. Find the exact value of

(a) sin%22.5° (b) cos?75°

(c) cos? (%J

. Find the exact value of tan22.5°.

. Simplify the following by using double angle identities.

(a) 2cos?(3A)-1 (b) 4sin5xcos5x

(c) 3—6sin? (g) (d) SSin(g)cos(g)

. Use an algebraic method to solve each of the following

equations.

(a) sin2x=3sinx for x €[0, 27|

(b) cos2x —sin?x =-2 for 0°< x <180°
(c) 5sin2x=3cosx for —M<x<T

(d) tan2x—tanx =0 for 0°<x<360°

~ © Cambridge University Press 2012. 9 Trigonometric equations and ientit' '



a Find all the values of #[—n, 7] which satisfy the equation

cos? @+ cos28=0. [5 marks]
Show that 1=cos26 =tan?4. [4 marks]
1+ cos28

8 Express cos46 in terms of
(a) cosd (b) sind [7 marks]

a (a) Show that

1 1
i) cos’| —x|=—(+cosx
(i) S 2( )
1 1
ii) sin?| —x |=—(1—cosx
(ii) (2 ) 2( )
1
(b) Express tanz(gx) in terms of cos x. [7 marks]

T
Given that asin4x = bsin2x and 0<x < o> express sin® x
in terms of a and b. [6 marks]

- Summary
= ..] i
e To solve trigonometric equations, follow this procedure:
; - First, rearrange the equation into the form sinA=k, cosA=k or tanA=k.
- Make a substitution for the argument of the trigonometric function, e.g. A =2x + 1 then
) sketch a graph over the required interval to see how many solutions there are (it is not
_! necessary to substitute A for x in simple trigonometric equations).
% - Find solutions in the interval [0,21]:

sinA=k = A =sin'k, A,=1n—A
cosA=k = A =costk, A,=2n— A, (i.e. the reflection of A,)

Y. tanA=k = A =tan'k, A, =T+ A
N - Find other solutions in the required interval by adding or subtracting multiples of 27 for
d sine and cosine and multiples of 7 for tangent.

e Use the values of A to find the value of x, i.e. transform the solutions back into the original
variable.

e Trigonometric functions are related through identities, e.g.

sinx
- tanx =

cos X
- Pythagorean identity: sin’x + cos’x =1

- double angle identities: sin26 = 2sinf cos 6; 2cos* -1
" cos(26) =11-2sin’ &
cos? @—sin? @
246 Topic 3: Circular Fq._ngtions and triggnom?tr-y ol : L Cambridge University Press 2012.
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Introductory problem revisited

The original Ferris Wheel was constructed in 1893 in Chicago. It was just over 80 m
tall and could complete one full revolution in 9 minutes. During each revolution, how
much time did the passengers spend more than 5m above the ground?

A car on the Ferris Wheel moves in a circle. Its height above the h
ground can therefore be modelled by a suitably transformed sine
or cosine function. The car starts on the ground, climbs to a
maximum height of 80 m and then returns to the ground; this
takes 9 minutes. We can sketch a graph showing the height of the
car above the ground as a function of time:

80

The period of the function is 9 and the amplitude is 40, so the

. (2w 2T
function should involve 40sin (? t) or 40cos (? t]. Fither

0 9
the sine or the cosine function can be used as the model; let us

choose the cosine function, so that no horizontal translation is needed. The centre of the circle is
at height 40, which means the graph is translated up by 40 units. Thus, an appropriate equation for
height in terms of time is

h=40 —4Ocos(2§t)

The minus sign in front of the cosine term ensures that when ¢ = 0 we have / = 0.

To find the amount of time that the car spends more than 50 m above the ground, we need to find
the times at which the height is exactly 50 m. This involves solving the equation

40— 4Ocos(2—nt) =50
9
Using the methods in this chapter, we get
2
cos(—nt) =-0.25
9
cos 1(—0.25)=1.82
2m
?t =1.820r2n—1.82=4.46
=t =2.61t,=639

Therefore the time spent more than 50 m above ground is 6.39 —2.61 = 3.78 minutes.

Iz - © amb;_dge Univers Jiy Press2012. 9 Trigonometric equgtiﬂgfnd _igientitjt_as 247 >

INO [O . Alligle Nd| I.O O . on. -




2]

Mixed examination practice 9

Short questions
Solve the equation tanx°=—0.62 for x € ]-90°, 270°[. [4 marks]

T 2
Given that 0 < &< ) and siné = 3 find the exact value of

(a) cos@
(b) cos26 [6 marks]
Solve the equation 5sin* @=4cos* @ for -t < F< m. [5 marks]

Sketch the graph of y =sin{2x)+2sin(6x) and hence find the exact period

of the function. [4 marks]

Prove the identity —tan? x =2+ tan? x. [5 marks]
cos? x

\ a Solve the equation cos#—2sin*#+2=0 for £<[0,2n]. [6 marks]

Use an algebraic method to solve the equation 6sin* x +cosx =4 for
0° < x<360°. [6 marks]

b e Solve the equation sin28 = cos@ for 0 < #<2m. [7 marks]

Long questions
1. The shape of a small bridge can be modelled by the equation
y=18 sin(g) , where y is the height of the bridge above the water and x

is the distance from one river bank, both measured in metres. The bridge is

just long enough to span the river.

Find the width of the river.

A barge has height 1.2 metres above the water level. Find the
maximum possible width of the barge so that it can pass under the bridge.

Another barge has width 3.5m. What is the maximum possible height
of the barge so that it can pass under the bridge? [10 marks]

248 Topic 3: Circular functions and trigonometry
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2. Sketch the graph of the function C(x) = cosx + %cos 2x for -2m < x <2m.
Prove that the function C(x) is periodic and state its period.
For what values of x, with —2n < x <2, is C(x) a maximum?
Let x=x, be the smallest positive value of x for which C(x)=0. Find
an approximate value of x, which is correct to two significant figures.
(i) Prove that C{x)=C(—x) for all x.
(ii) Let x=x, be that value of x with < x <27 for which C(x)=0.

Find the value of x, in terms of x,. [16 marks]
(© IB Organization 2004)

\%\ 3. Find the value of k for which the equation 4x* —kx+1=0 hasa
repeated root.

Show that the equation 4sin* #=5—kcosé can be written as
4cos?@—kcosB+1=0.

Let f,(6)=4cos*—kcosH+1.
(i) State the number of values of cos & which satisty the equation

f.(8)=0.

(ii) Find all the values of #e[-2m,2n] which satisty the equation
f.(6)=0.

(iii) Find the value of k for which x =1 is a solution of the equation
4x2—kx+1=0.

(iv) For this value of k, find the number of solutions in [-2m, 27t] of the
equation f, (&)=0. [14 marks]

© Cambridge University Press 2012. 9 Trigonometric equations and identities
Not for printing, sharing or distribution.
[ il F [ 9.8 888 = FRY Y

249




,0°)

In this chapter you
will learn:

® some important

trigonometric relations
in right-angled
triangles

how to use the sine
rule to find sides and
angles of a triangle

how to use the cosine
rule to find sides and
angles of a triangle

an alternative formula
for the area of a
triangle

techniques for solving
geometry problems
in two and three
dimensions

how to calculate the
length of an arc of a
circle

how to calculate the
area of a sector of a
circle

to use trigonometry
to solve problems
involving circles and
triangles.

ey

FATB) O 8 QoS g =——""p g P\

Two people are trying to measure the width of a river.
There is no bridge across the river, but they have
instruments for measuring lengths and angles. When
they stand 50 m apart on the same side of the river, at
points A and B, the person at A measures that the angle
between line (AB) and the line from A to the tower on the
other side of the river is 25.6°. The person at B finds the
corresponding angle to be 28.3°, as shown in the diagram.
Use this information to calculate the width of the river.

A 50 m B

y

The first steps in developing trigonometry were taken by Babylonian astronomers as
I, early as the second millennium BCE. It is thought that the Egyptians used trigonometric
calculations when building their pyramids. Trigonometry was further developed by the
Greeks and Indians. Some of the most significant contributions were made by Islamic
mathematicians in the second half of the first millennium BCE.

250 Topic 3: Circular functions and trigonometry
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The problem above involves finding lengths and angles in
triangles. Such problems can be solved using trigonometric
functions. In fact, the word trigonometry means ‘measuring
triangles, and historically trigonometry was used to solve
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similar problems in land measurement, building and astronomy.
In this chapter we will use what we have already learned about
trigonometric functions and develop some new results to enable
us to calculate lengths and angles in triangles.

Right-angled triangles

In previous courses, you may have been introduced to the sine,
cosine and tangent functions in the context of a right-angled
triangle. We will now briefly discuss how this view relates to the
definitions given in chapter 8.

Trigonometric func-
Recall how sine and cosine were defined using the unit circle. tions were defined <
Let 0° < #<90°, and let P be the point on the unit circle such @ in sections 8B and
that SOP = #. Then PQ =sin# and OQ = cos 4. 8C.
B
P
sin
0 Cc
Of cost Q S @
0 [
A b C

Now consider a right-angled triangle ABC with right angle at C
and BAC= 6.

The triangles OPQ and ABC have the same angles, so they are

) . .
similar triangles. Therefore See Prior Learning

Y

@section T on the
_ _ CD-ROM  for a
sind cosd 1 reminder about sim-
ilar triangles.

a b c

By rearranging these equations we find that the ratios of sides
in a right-angled triangle are trigonometric functions of the
angle 4.

J
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section U on the
<1CD-ROM for prac- <].
tice questions on

right-angled triangles.
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KEY POINT 10.1

In a right-angled triangle: B
2 _sing
c
b =cos ¥
c c "
a_5n 4 =tané
b cosd
o [
A b C

See Prior Le arm’ng These equations apply only to acute angles. In the rest of this

chapter we shall deal with triangles in general, including those
containing obtuse angles, in which case we would need to use
the definitions of trigonometric functions based on the unit
circle.

Two terms that come up frequently in trigonometry are the
angle of elevation and the angle of depression.

KEY POINT 10.2

The angle of elevation is the angle above the horizontal.

Angle of Elevation

Horizontal

The angle of depression is the angle below the horizontal.

Horizontal

Angle of Depression

© Car’r]br.id > University Press 2012.
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Worked example 10.1 - 1

Daniel and Theo are trying to work out the height of a bird’s nest in their garden. From Theo’s
bedroom window, which is 4m above the ground, the angle of depression of the nest is 10°.
From Daniel’s position at the end of the flat garden, 8 m away from the house, the angle of
elevation is 30°. Find the height of the nest above the ground.

EXAM HINT
If a diagram is not given, it is always a good idea to

sketch one, labelling any points that you refer to in your
working.

Sketch a diagram. A v
The letters B, D and T represent the 4—h
positions of the bird’s nest, Daniel B

and Theo, respectively. The letters
A and C refer to points directly
above and below the nest.

-
S
3
-— ]

Apply trigonometry to the right- ¢ From triangle TAB,

angled triangles to find the canioe=3=h
horizontal distances x and y in terms y
of the height h. 4—h
=y=
tani10°

From triangle BCD,

- “"““‘\q‘._ A Sesan A Mecteeehfion L A Seain A A Seaaa A Secanmenbihe . A Senaa A A B Vo

tan30° = h

x
h
X =
tan 30°
()
Now use the length of the garden, * X+y=86
which is the total horizontal distance.
Substitute the trigonometric ® L 4=h _h _
expressions for x and y. " tanl0®  tan30° ;
~ © Cambridge University Press 2012. 10 Geometry of triangles and circles 253
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ol continued . . .

Rearrange the equation to find h. 1F+°
you find it cumbersome to write out
tan 10° and tan 30° repeatedly, you Then

can define a short name for each.

Llet a=tan 10°and b=tan 30°.

4—-h h
+—-=56
b

=(4—-h)b+ha=8&ab
= h(a—b)=&ab—4b

h=8ab—4b
a—b

=

Finally, evaluate a and b and hence ¢ a=0176, b= 0.577
- h=37%m (3 SF)

EXAM HINT
While it is acceptable to put in the
values for tan10° and tan 30° before

108 rearranging the equation, this can
k. easily lead to arithmetic errors. It is
g ) safer to rearrange first and calculate

values at the end. Remember that you
can save values to each of the lettered
memory sites in your calculator, so you
could assign tan 10° to memory A and
tan 30° to memory B, for example; this
would make it much faster to evaluate
the final expression for h.

pUTey
Ao’ e e e A A et A B aa A A NN A AT e

q The sine rule

Can we use trigonometry to calculate sides and angles of
triangles that do not have a right angle? The answer is yes, and
one way to do this is by using a set of identities called the sine
rule. In the diagram on the left at the top of the next page, the

| triangle has AB = 7, BAC = 55° and ACB = 80°. Can we find the
s - length BC?
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B pray R
B B
7 T 7
80° ° 80° o
55 | 55
C A C D A

EXAM HINT
ExAT ——

Remember the
\ntemoﬂono\
Baccalaureate
notation for lines ‘
and line segments:
(AB) stands for
the straight line

There are no right angles in the diagram, but we can create some
by drawing the line [BD] perpendicular to [AC], as shown in
the second diagram.

We now have two right-angled triangles: ABD and BCD.
B
In triangle ABD, TD =5in55° s0 BD = 7sin55°.

In triangle BCD, Bb_ sin80°, so BD = xsin80°. through A and
Comparing the two ions for BD B that extends,
omparing the two expressions for BD, we get 'mdeﬂn“e\y in bof

x sin80° =7 sin55° (%)
and rearranging gives

75in55°
x=2M22 5 gy
sin80°

In fact, we did not even need to write down expressions for BD

but can go straight to equation (*). This equation can also be B
written as
x 7
sin55°  sin80°
7
which is an example of the sine rule. Note that the length of )
each side is divided by the sine of the angle opposite that side.
80° 55°
C A

i

.'l .":'-
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We can repeat the same process, dropping a perpendicular from
A or from C, to obtain a general formula relating the three side
lengths and three angles.

KEY POINT 10.3

The sine rule:

a b ¢
sinA sinB sinC

Normally, you would use only two of the three ratios in the sine

rule. To decide which ones to use, look at what information is
- given in the question. In any case, you always need to know one

A angle and its opposite side to be able to apply the sine rule.

i Worked example 10.2

Find the length of side [AC].

E. 40°
i A 12
+H
b We are given the angles opposite ** AB _ AC
[AB] and [AC], so use the sine sinC  sinB
rule with those two sides. 12 AC

sinG0°  sin40°

L L‘-““““Mh\.*““{‘ w

o AC= 12sin40°
sine0°
: 2 =8.91 (3 SF)
\,“_‘MMJ—A-F—‘J“%—,,_,.-__,_‘,J/“‘MM
L
\
E) <—

G . © Cambridge University Press 2012.
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We can use the sine rule to find angles as well as side lengths.

Worked example 10.3

Find the size of the angle marked 4.

17 14

f 67°
We can use the sine rule because <* 17 14 >
we know an angle together with its sin67°  sin @ ;*
opposite side, are given one of the ]
other sides, and want to find the s i 67" _ 0758 fi{
angle opposite that side. \
f=sin"0.758 = 49.2° j
T N e U ONIPIP S Y

\ _/

In the above example, once we have found & we can deduce the
size of the third angle even though we do not know the length
of the side opposite it: the third angle must be 180° — 67° - ¢ =
63.7°. So, provided that we know one side length and the angle
opposite it, we can use either of the remaining side lengths to
calculate both remaining angles.

You should remember from chapter 9 that there is more than See section 9A on

one value of & with sin#=0.758; besides 49.3°, another . :

solution of the equation is 180° — 49.3° = 130.7°. Does this mean @ solving Irigonomet- <1
that Worked example 10.3 actually has more than one possible
answer?

ric equations.

Note, however, that because the given angle is 67°, the solution
130.7° for & is impossible: the three angles of the triangle

must add up to 180°, but 67 + 130.7 = 190.7 is already greater
than 180. All other solutions of sin &= 0.758 are outside the
interval ] 0°,180°[, so cannot be angles of a triangle. Therefore,
in Worked example 10.3, there is only one possible value for the
angle 4.
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P The next example shows that this is not always the case.

/ Worked example 10.4

_ Find the size of the angle marked 6, giving your
S answer to the nearest degree.
: 17 14
a7 0
] o :'
_ Use the sine rule with the two given 7 14 \
sides. sind sin47° J
1 ) 17 sin 47° J
= sinf=——=0.888
14 ,e
; ; i e® in"0.688 = 062.6° !
Find the two possible values of @in* elil Cueioe = G d
10°, 180°. — 9=062.6° or 180° —62.6° = 117.4° ]
L0 £
mn Check whether each solution «® ©2.6+47=109.6<18C
’ is possible: do the two known N7.4 + 47 =1644 <180
angles add up to less than 180°2 \
L . . o o "'
Both solutions are possible. < 7 @=65° or 17 j
~ o e VG J/—““"“‘-&MM‘J
P\ Y s . /
%
f" EXAM HINT

In the examination, a question will often alert you to
E look for two possible answers, or instruct you which one
2 to choose, for example by specifying that 8 is obtuse.
However, if the question gives no clue, you should always

b check whether the second solution is possible by finding
the sum of the known angles.
The diagram below shows the two possible triangles for Worked
! example 10.4. In both triangles, the side of length 14 is opposite
- the angle 47°, with another side having length 17, which could
z be opposite an angle of either 63° or 117°. If these two triangles
ni
) <—
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are placed adjacent to each other, they would form an isosceles P b
triangle with base angles 47° and equal sides of length 17.

17 14
47° 63°

. Exercise 10B

1. Find the lengths of the sides marked with letters.

@) (i) ,
45°
5 T
12
62° o
47 580

(b) (1) (ii)

TLin
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2. In each triangle, find the size of the angle marked with a
letter, checking whether there is more than one solution.

(ii)
yO
9 cm
75°
8 cm
(ii)
42 cm 21 cm
26.2° w°
() () (ii)

6.2 cm

75° °

5.2 cm

3. Find all the unknown sides and angles in triangle ABC.
A

12.8 cm

130°
B 6 cm C

N
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In triangle ABC, AB=6cm, BC =8 cm, ACB = 35°.
Show that there are two possible triangles with these

A
measurements, and find the remaining side and angles for
each. [4 marks] ; ; .
In the triangle shown in the diagram alongside,
AB=6,AC =8, AD =5 and ADB = 75°. Find the length of 750
the side [BC]. [5 marks] 4 )

@ A balloon is tethered to a peg in the ground by a
20 m string, which makes an angle of 72° to the
horizontal. An observer notes that the angle of elevation
from him to the balloon is 41° and his angle of depression
to the peg is 10°. Find the horizontal distance of the

observer from the peg. [6 marks]
Show that it is impossible to draw a triangle ABC with
AB=12cm, AC=8cm and ABC = 47°. [5 marks]

The cosine rule

The sine rule allows us to calculate angles and side lengths of a ¢ b
triangle provided that we know one side and its opposite angle,
together with one other angle or side length. If we know two
sides and the angle between them (the upper diagram
alongside), or if we know all three side lengths but no angles
(the lower diagram alongside), then we cannot use the sine rule.
However, in these cases we can still find the remaining angles
and side lengths of the triangle — we just need to apply a
different rule, called the cosine rule.

Can we find the length of side [AB] in the triangle below?

The sine rule for this triangle says _AB = .8 = ,12 ,
sin70° sinB  sinA
but since we do not know either of the angles A or B, it is B “
impossible to find the length AB from this formula. However,
just like for the sine rule, by creating two right-angled triangles

in the original triangle we can derive a different formula for AB.

A

70°

© Cambridge University Press 2012. o 10 Geometry of triangles and circles
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See the Fill-in proof sheet 7 ‘Cosine rule’ on the CD-ROM for
details.

KEY POINT 10.4

The cosine rule

EXAM HINT
A

This is the form
of the cosine
rule given in
Formula boo

t you can

E;J\GZ\ge the names
of the variables
to whatever you
like as \\ong o:he

e angle on
t:’:gh’f-h?nnd side (t'he
argument of cosine

corresponds 10
(i.e.is opposite 10
the length on the
lefthand side of the

equation.

c?=a*+b*—-2abcosC

fhe

klet,

Note that the capital letter C stands for the angle at vertex

C, that is, angle ACB, which lies opposite the side marked c.
(Similarly, B would stand for ABC opposite b, and A for BAC
opposite a.)

The cosine rule can be used to find the third side of a triangle
when we know the other two sides and the angle between them.

Worked example 10.5

4

Find the length of the side [PQ]. ©

H )

L R 7 P
)
As we are given two sides and the <* PQ? =72 +10% — 2 X 7 X 10 X cos 115° :

angle between them, we can use
the cosine rule. PQ® =208.2
9 > - o PQ=+/2082 =144 j
z ‘-@ﬁn*"pf‘ﬁ_n*—~#—fh}ﬁfﬂmupj
. W

nl

P~
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We can also use the cosine rule to find an angle if we know all
three sides of a triangle. To do this, we need to rearrange the
formula.

KEY POINT 10.5

a’+b>—c? I
2ab

cosC =

Worked example 10.6 f)l

Find the size of the angle ACB correct to the nearest degree.

c
10 cm 14 cm
A 20 cm B
4
{
Apply the rearranged cosine rule. * ool = 47 H107 - 207 £
2x14 %10
_ o
2860
= _0.371 \
1
Use inverse cosine fo find the angle. < . C=cos™(-0.371) = 112° b
ISR f"‘"‘_‘r“‘»-"‘*A-«Lf’"““““-uw‘-‘J
. J

Notice that in both Worked examples 10.5 and 10.6, the angle
was obtuse and thus its cosine turned out negative. Note also
that, unlike with the sine rule, when using the cosine rule to
find an angle there is no second solution: recall that the second
solution of cosx =k is 360°—cos ' k , and this will always be
greater than 180°, so it cannot be an angle in a triangle.

It is possible to use the cosine rule even when the given angle
is not opposite the required side, as illustrated in the next : :
example. This example also reminds you that there are some <1 onometric functions <l.

exact values of trigonometric functions you need to remember. were cl()wered i sec-
tion 8D.

Exact values of trig-
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a [ : | D .. Cadd b

B
( Worked example 10.7

: j : % Find the possible lengths of the side marked a.
a 7
60°
8
()
As all three sides feature in the ® 72 = g2 + 82 -2 X ax&cos 60° [j
question, we can use the cosine rule. :
The known angle is opposite the side ]
of length 7. |
Y !
Use the fact that cos 60° = 5 to S 49 =02 +64—8a 4
simplify.
()=
Recognise that this is a quadratic ¢ o a2-8a+15=0 3
equation. o (a-3)(a-5%)=0 J
S a=3 or 5 R N
\AL.AA_‘MIAH’H‘P"#'-'JF e Y

It is also possible to answer this question by using the sine
rule twice, first to find the angle opposite the side of length 8,
and then to find side a. Try this to see if you arrive at the same
answers.

The next example illustrates how to select which of the sine rule
or cosine rule to use. For both rules, we need to know three
measurements in a triangle to find a fourth one.

7l
. <—
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In the triangle shown in the diagram, AB = 6.5cm,
AD=7cm, CD =5.8cm, ABC=52° and AC = xcm.
Find the value of x correct to one decimal place.

The only triangle in which we know *
three measurements is ABD. We
know two side lengths and an angle
opposite one of these sides, so we
can use the sine rule to find ADB.

()
Are there two possible solutions? *

In triangle ADC, we know two sides *
and want to find the third. If we
knew ADC, we could use the cosine
rule, but this angle can be found
easily.
Now we can now apply the cosine °..
rule.

C

5.8

52°

<

Sine rule in triangle ABD:
let ADB = 8; then

65 7
sind sinb2°
6.5s5in52°
= sinléd= —7 =0.7317

sin10.7317 = 47.0°

1860 — 47 =133 but 135+52> 180,
50 there is only one solution, &= 47°

ADC = 180° — 47° = 133°

Cosine rule in triangle ADC:
X2 =72+D5.8% -2 X7 X5.8co5133°
x2 =137.99

x =+/137.99 =117 cm

RV
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steps it is important not fo round intermediate calculation
results. Use the memory or [ANS| button on your calculator
and round answers only at the end. You do not, however,
have to write down all the digits on your calculator display
in the intermediate steps of working.

. Exercise 10C
1. Find the lengths of the sides marked with letters.

(a) (i) (ii)
80°

2.8 Y

65°

3.5

() () (ii)
12 131° 10.5

125°

2. Find the angles marked with letters.
(a) (i) (ii)

3
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(b) (i) (ii)

7.2 6.5

14

4.2

3. (i) Triangle PQR has sides PQ = 8cm, QR = 12cm and
RP = 7 cm. Find the size of the largest angle.

(ii) Triangle ABC has sides AB =4.5cm, BC = 6.2cm and S

CA = 3.7cm. Find the size of the smallest angle. -
Ship S is 2km from port P on a bearing of 15°, and boat B

is 5km from the port on a bearing of 130°, as shown in the P ‘
diagram. Find the distance between the ship and the boat.

[6 marks] 5 km

Find the value of x in the diagram.
B

4\

T cm

A 10°em C [6 marks]
a In triangle ABC, AB=(x—3)cm, BC=(x+3)cm,
AC =8 cm and BAC = 60°. Find the value of x. [6 marks]

% @B In triangle KLM, KL = 4, LM = 7 and LKM = 45°. Find the
exact length KM. [6 marks]

Area of a triangle

We have seen how to calculate side lengths and angles of a
triangle; another quantity that we might be interested in finding
is the area of the triangle. The formula

50°

%base x perpendicular height should be familiar, and we can

use this to find the area of the triangle shown in the diagram.

- © Cambridge Univers
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In order to calculate the area, we need to find a height of the
triangle. For instance, we could draw the line (AD)
perpendicular to (BC), as in the diagram alongside.

Then AD = 5sin50°, so the area of the triangle is

1 1
EBCXAD: ExSxSsinSO": 15.3 cm?

We can use the same method for any triangle, and hence obtain
a general formula for the area.

KEY POINT 10.6

There is also a formula The area of a triangle is C
for the area of a Y ;

. . L given by
triangle involving its |
three sides; it is called Area = — absinC

Heron’s formula. 2 b a

e ~ Not for printin

As well as calculating the area given two sides and the angle
between them, we could also be asked to find the angle (or one
of the side lengths) given the area.

Worked example 10.9

The area of the triangle in the diagram is 52 cm? A
Find the two possible values of ABC, correct to one decimal place.
15 ecm
0
B 11 cm C
. 5 f
We can directly use the formula from 1115 sin@ =52 ;
Key point 10.6. 2 )
2%x52 {
=  oinf= = 0.6303 {
1% 15 :
sin™ 0.6303 = 39.07° J
. O=39.1° or 180° —39.1° = 141°(3SF) d
e o f““f_“""’“ﬂ»u" — AP - “"‘*"‘w»_‘_‘»‘rl
\ W,
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In the next example, we use the sine rule to calculate the

information needed, and then apply the formula for the area of
the triangle.

Worked example 10.10

P
% Triangle PQR is shown in the diagram.
(a) Calculate the exact value of x. o
(b) Find the area of the triangle. ,
60°
Q 8 R
. . .8 & X 3
Since we know two angles and a side that is () ——==—"—"23
. . sin4b sinGO
opposite one of the angles, we can use the sine rule.
We are asked to find the exact value of x, so use ¢ _, &_x
the exact values for sin45° and sin60°. 2 8 }
L l_zx y
V2 3
163
x=—==4J6
242 ;
® ;
To use the formula for the area of the triangle, we ¢ (b) PQR =180° — B0° — 45° = 75° ‘
need PQR. 1
Area = %(& X 4\/5) 5in75° ‘
=37.9(35F) ‘
‘~A-M,A.I‘H“'MM-\AJ’-“"‘-_.»J
N W,
. Exercise 10D
1. Calculate the areas of these triangles.
@O [ (if
5.6 cm
4 cm
7 cm
/N 8.2 cm
o wQy C ambridge Universit 10 Geometry oF‘.triangL_es and circles 269
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P ( (b) (i) (ii)
§ - 9 cm 8.5 cm
| 6.2 cm
o 130° '
8 cm

2. Each triangle has the area shown. Find two possible values
el for each marked angle.

. @) ~ (ii)
12 16 cm
- cm
. 8.2 cm
05 6.7 cm

In triangle LMN, LM =12 cm, MN = 7 cm and LMN = 135°,
Find LN and the area of the triangle. [6 marks]

A In triangle PQR, PQ =8 cm, RQ =7 cm and RPQ = 60°.
Find the exact difference in areas between the two possible
triangles. [6 marks]

Trigonometry in three dimensions

In many applications we need to work with three-dimensional
objects. The examples in this section show you how trigonometry
can be applied in three dimensions. The general strategy is to
identify a suitable triangle and then use one of the rules from the
previous sections.

n(

—
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Worked example 10.11

A cuboid has sides of length 8 cm, 12cm and 15cm. 19 D
The diagram shows diagonals of three of the faces. B
(a) Find the lengths AB, BC and CA.
(b) Find the size of the angle ACB. 8
(c) Calculate the area of the triangle ABC.
(d) Find the length AD.
15 A
» )
[AB] is the diagonal of the front face, ¢ (a) AB? =15% + 6% =269 3
so it is the hypotenuse of a right- AR =298 =17 cm
angled triangle with sides 8 and 15.
Find BC and CA in a similar way. * BC = V12% +15% =19.2 cm 3
CA=12? +8? =144 cm l!
{
@ C f
Now look at triangle ABC. Draw the * (b) y
triangle by itself if it helps. =
B 144
\
]
17 [
{
A §
. K 2 2 _ 172
We know all three sides and want to cosC = 14.47 +19.27 —17% _ 0519
find an angle, so we use the cosine 2X14.4x19.2
rule_ S.C=cos'0519=58.7°
{
1
Use the formula for the area, with ¢ (c) Area= 5(144 X 19.2)sin 58.7° y

the angle we found in (b). =118 cm?

ABD is a right-angled triongle.°. (P

12

B 17 A
AD? =122 +172

\/ 453 = 20 &cm

NP NG = —

\_ "“-“"‘ Y,

]

|
E_x._s.__ﬁ_,__s._g__\.r/
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Part (d) of the previous example illustrates a very useful fact
about the diagonal of a cuboid.

KEY POINT 10.7

The diagonal of a cuboid with dimensions p, g and r has
length \/p? +¢q*+1?
r
q
p
In chapter 11 you
will meet vectors, The key to solving many three-dimensional problems is spotting

]> which  can  also ]> right angles. This is not always easy to do from diagrams that

be used to solve are drawn in perspective, but there are some common

three-dimensional configurations to look for; for example, a vertical edge will

problems. always meet a horizontal edge at 90°, and the symmetry line of
an isosceles triangle is perpendicular to its base.

Worked example 10.12

The base of a pyramid is a square of side length 4 cm. The other A
four faces are isosceles triangles with sides of length 7 cm.
The height of one of the side faces is labelled h.

(a) Find the exact value of h.
(b) Find the exact height of the pyramid.
(c) Calculate the volume of the pyramid, correct to 3 significant figures.
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continued . ..

Triangle AFC is right-angled. ¢ (a) A
Draw it separately and label the sides.
e
C 2 F
Use Pythagoras’ Theorem to find h. ¢ HEI=72 =28
s h=/45 cm
Add the height of the pyramid to the ¢ (b) £
diagram. It is the length of a vertical
line [AM] which is perpendicular to
the base. The point M is the centre of
the base, so MF = 2cm, and AMF
is a right angle. Draw the triangle i
AMF.
M
2
Use Pythagoras’ Theorem to find H. ¢ H? = (\/E) —2?
s H=~/41om
1
The formula for the volume of** (c) V= = X 4% x \J41)
a pyramid (from thsol:ookrlr;;ﬂg = 341 o (BSF)
% x area of base x vertical height.
WO See Prior Learning
section 'V on the
<] CD-ROM  for the <]
volumes of three-
dimensional shapes. e Ao N M

s
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P{ . Exercise 10E

] 1. Find the length of the diagonal of the cuboid with the
following dimensions.

(i) 3ecmx5cmx 10cm  (ii) 4cm x4cm X §cm

A cuboid has sides of length 12.5c¢m, 10cm and 7.3 cm. It is
intersected by a plane passing through vertices A, B and C.
Find the angles and the area of triangle ABC. [8 marks]

John stands 12 m from the base of a flagpole and sees the
top of the pole at an angle of elevation of 52°. Marit stands
8 m from the flagpole. At what angle of elevation does she
1 see the top? [6 marks]

A square-based pyramid has a base of side length a =8 cm
and height H =12 cm. Find the length I of the sloping side.
T [6 marks]

The base of pyramid TABCD is a square. The height of the
pyramid is TM = 12 cm, and the length of a sloping side is
17 cm TC=17cm.

_f / (a) Calculate the length MC.
1Zem (b) Find the length of the side of the base. [6 marks]

|| ~ Y ]4\/C

A B

- a The diagram shows a vertical tree PQ and two observers,
b A and B, standing on horizontal ground. The following
N quantities are known:

AQ=25m, QAP = 37°, QBP = 42°, AQB = 75°

. B (a) Find the height of the tree, h.

(b) Find the distance between the two observers. [8 marks]

G . © Cambridge University Press 2012.
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= Annabel and Bertha are trying to measure the height, /, of a
vertical tree RT. They stand on horizontal ground, distance
d apart, so that ARB is a right angle. From where Annabel
is standing, the angle of elevation of the top of the tree is a
and from where Bertha is standing, the angle of elevation of

the top of the tree is P.

(a) Find expressions for RA and RB in terms of h, oc and 3,
and hence show that

1 1 B
h? + =d’
tan’o.  tan?f3
(b) Given that d =26 m, o.=45°and f=30°, find the
height of the tree. [8 marks]

(i

Length of an arc

The diagram shows a circle with centre O and radius r, and B

points A and B on its circumference. The part of the

circumference between points A and B is called an arc of the

circle. As you can see, there are in fact two arcs: the shorter one

is called the minor arc, and the longer one the major arc. We say W)
that the minor arc AB subtends angle & at the centre of the

circle; that is, the angle AOB beneath the arc is .

You learned in chapter 8 that the measure of angle # in radians
is equal to the ratio of the length of the arc AB to the radius of

!
the circle; in other words, &= —. This gives us a very simple

r
formula for the length of an arc of a circle, if we know the angle
it subtends at the centre.

KEY POINT 10.8
The length of an arc of a circle is
I=r@

where r is the radius of the circle and & is the angle
subtended at the centre, measured in radians.
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Worked example 10.13

Arc AB of a circle with radius 5cm subtends an angle

of 0.6 at the centre, as shown in the diagram. B

(a) Find the length of the minor arc AB.
(b) Find the length of the major arc AB.

77 [

Use the formula for the length of an® (a) I=r8 ff
arc. =5x0.6 i
=3cm f
L
> )
The angle subtended by the major® (b) 6=2n-0.6 |
arc is equal to a full turn (2% radians) =5.683 J
minus the smaller angle. I=r6
=5 X 5.6b3 J
=284 cm(3 SF) \
VS NPT ,rﬁfué'r L OV VY W . P e M
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We could have done part (b) differently, by finding the length of
the whole circumference and then taking away the minor arc:
the circumference is 277 = 21 X 5= 31.42, so the length of the

major arc is 31.42 — 3 = 28.4cm (3 SF).

If the angle is given in degrees, we must convert to radians

before using the formula for arc length.

Worked example 10.14

Two points A and B lie on the circumference of a circle B

of radius rcm. The arc AB has length 10.9 cm and subtends

an angle of 52° at the centre of the circle. 10.9 cm

(a) Find the value of r. A

(b) Calculate the perimeter of the shaded region.

E—
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continued . . .

/
We know the arc length and the ¢ (a) l=rf@=r= 7
angle, so we can find the radius.

Remember that in order to use the * g=52 % % =0.908
arc length formula, the angle must
be in radians. = 109 _ 12.0 cm
0.9086
The perimeter is made up of two ¢ (b) p=2r+I 1
radii and the arc length. =2x120+10.9 4
=249 cm

P
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. Exercise 10F

1. Calculate the length of the minor arc subtending an angle
of & radians at the centre of the circle of radiusr cm.

() =12, r=65 (i) #=0.4, r=45

2. Points A and B lie on the circumference of a circle with
centre O and radius rcm. Angle AOB is ¢ radians.
Calculate the length of the major arc AB.

Q) r=15 6=08 (i) r=1.4, #=14

Calculate the length of the minor arc AB in the diagram below.

[4 marks]
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In the diagram alongside, the radius of the circle is 8 cm

and the length of the minor arc AB is 7.5 cm. Calculate the
size of the angle AOB

(a) in radians

(b) in degrees. [5 marks]

Points M and N lie on the circumference of a circle with

centre C and radius 4 cm. The length of the major arc MN
is 15 cm. Calculate the size of the smaller angle MCN.
[4 marks]

a Points P and Q lie on the circumference of a circle with

centre O. The length of the minor arc PQ is 12 cm and
POQ =1.6. Find the radius of the circle. [4 marks]

In the diagram below, the length of the major arc XY is

28 cm. Find the radius of the circle.

e [4 marks]
X

e The diagram alongside shows an equilateral triangle ABC

with side length a = 5 cm. A figure (outlined in red) is made
up of arcs of three circles whose centres are at the vertices of
the triangle. Calculate the perimeter of the figure. [5 marks]

g Calculate the perimeter of the figure shown in the diagram below.

8cm

0.7

5cm

8cm [6 marks]

% Find the exact perimeter of the figure shown in the

diagram alongside. [6 marks]

© Cambridge University Press 2012.
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A sector of a circle has perimeter p=12 cm and angle
#=0.4 at the centre. Find the radius of the circle.  [5 marks]

A cone is made by rolling a piece of paper shown in the
diagram below.

12

3

18

If the cone is to have height 12 cm and base diameter 18 cm, find the
size of the angle marked #. [6 marks]

Area of a sector

A sector is a part of a circle bounded by two radii and an arc.
As with arcs, we can distinguish between a minor sector and a
major sector.

Consider the blue-shaded region. What fraction of the circle
does this account for? 0
1 Major
Thinking in terms of angles, the fraction should be Pl sector
T

If we compare areas, then since we know that the total circle

. . A
area is mtr?, the fraction can also be expressed as —  where A
represents the area of the sector. r

Both expressions define the same fraction, so they must be equal:
A 0

e 2m
Rearranging this equation gives a formula for the area of the sector.
KEY POINT 10.9

The area of a sector of a circle is
1
A=—r2@
2

where r is the radius of the circle and & is the angle
subtended at the centre, measured in radians.
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The diagram shows a circle with centre O and radius 6 cm,
and two points A and B on its circumference such that
AOB =1.2. Find the area of the minor sector AOB.
£
A B
® |
Use the formula for the area of a A=—r?8 1
sector. ? f
= X6 x12 '
2 |
=21.6 cnr? 1
\ DUV W o WOV SV ’"“‘““H»_AWA‘IJ

Worked example 10.15

Remember that the angle needs to be in* and, f
i {
radians. 6=50 x = 0.87% f
® e |
Substitute the values into the formula for «® o, f
perimeter to find r. 12=0.873r+2r=2873r 3
S = % =4177 J
& )
Substitute @ and r into the formula for sector s A= 5(4.177)2 (0.8673) |
area. =7.62 cm® (BSF) d
\ N -!r—‘*f—‘*’“'“——\n"ﬁ“’“ W /—““"“H»_,__‘MAJJ

We may have to use the formulas for arc length and area in
reverse.

Worked example 10.16

A sector of a circle has perimeter p=12 cm and angle &=50° at the centre. Find the area of
the sector.

To find the area we can use A= %rzé’, but first
we need fo find r.
We are given the perimeter, which is the sum*® p=ré+2r

of the arc length and two radii. We can use
this equation to find r.

.'
U VY G G VNG
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. Exercise 10G (4

1. Points M and N lie on the circumference of a circle with
centre O and radius rcm, and MON = ¢ Calculate the area
of the minor sector MON if

(i) r=50=13 (i) r=04, =09

2. Points A and B lie on the circumference of a circle with
centre C and radius rcm. The size of the angle ACB
is @ radians. Calculate the area of the major sector ACB if

(i) r=13, =0.8 (i) r=14, =14

ol

% A circle has centre O and radius 10 cm. Points A and B lie on
the circumference so that the area of the minor sector AOB
is 40 cm?. Calculate the size of the acute angle AOB. [5 marks]

Points P and Q lie on the circumference of a circle with
radius 21 cm. The area of the major sector POQ is 744 cm?.
Find the size of the smaller angle POQ in degrees. [5 marks]

A sector of a circle with angle 1.2 radians has area 54 cm?.
Find the radius of the circle. [4 marks]

a A sector of a circle with angle 162° has area 180 cm?. Find
the radius of the circle. [4 marks]

Find the area of the shaded region in the diagram below.

[6 marks]

a The perimeter of the sector MON shown in the diagram
alongside is 28 cm. Find its area. [5 marks]

%\ a A sector of a circle has perimeter 7cm and area 3 cm? Find 0 .
the possible values of the radius of the circle. [6 marks]

Points P and Q lie on the circumference of a circle with
centre O and radius 5 cm. The difference between the areas
of the major sector POQ and the minor sector POQ is
15cm? Find the size of the angle POQ. [5 marks]

J
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Triangles and circles

Besides arcs and sectors, there are two other important parts of
circles that you need to know about: chords and segments.

.. g

..
R Worked example 10.17

The diagram shows a sector of a circle with radius 7 cm;
the angle at the centre is 0.8 radians. Find
(a) the perimeter of the shaded region
(b) the area of the shaded region.
()<
{
The perimeter is made up of the arc AB and ** (a) p=arc+ chord \
the chord [AB]. ‘j
-
The formula for the arc length is [=ré&. I=7%X0.8 :
=56 cm 'f
The chord [AB] is the third side of the isosceles <* AD= éz;xﬁil’]oA’ 3
triangle ABC. We can split ABC info two - oo
identical right-angled triangles with base % i
F: and hypotenuse 7; therefore % = 7sin%. j
1 4
i/ (Alternatively, you can use the cosine rule on
triangle ABC to find AB.)
) Now we can calculate the perimeter. .. p=56+545 E,
i =111 om i
If we calculate the area of the sector and then «® (b) A=sector —triangle
7 subtract the area of triangle ABC, we are left J
with the area of the segment.
{
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=
continued . . . P( A
3
° 1
The formula for the area of a sector is §r26’. sector = 5(72 X 0.8)

c=19.6cm?
Y S

The formula for the area of a triangle is o triangle = 5(7 X 7)ein0.8 }

1 .

Eab sinC. =1758cm? pl

()
We can now find the area of the segment. * L A=19.6-1758

=2.02cm? 1
N ————————————————————— — — | L

Following the method used in Worked example 10.17, we can
derive general formulas for the length of a chord and the area of

a segment.
KEY POINT 10.10 -~
The length of a chord of a A EXAM HINT
circle is given by e are
These formulae @
not given in e
AB= 2rsin(g) Formula booklet, s0 |
2 7 ou need fo know
and the area of the shaded how to derive them.
segment is ‘
0
%rz(é’—sin 6) 7 B 3

where the angle & is measured in radians and is the angle | D
subtended at the centre.

The next example shows how we can solve more complex
geometry problems by splitting up the figure into basic shapes
such as triangles and sectors.

Iz - © Cambridge University Press 2012. =~ 10 Geomeiry of‘dniangdies and circles 283
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The diagram shows two identical circles of radius 12 such
that the centre of one circle is on the circumference of the other.

(a) Find the exact size of angle PalQ in radians.
(b) Calculate the exact area of the shaded region.

The only thing we know is the radius of the **
circles, so draw in all the lengths which are
equal to the radius.

o A TC A
The lengths CP, C,P and C,C, are all equal FCC, = == Qc,C,
to the radius of the circle, so triangle PC,C, is .~ o
equilateral; similarly for triangle QC,C,. - PCQA= =

The shaded area is made up of two equal'.
segments, one for each circle, each with angle

P SRS S I YL USRI SISO, IS A= Nona,,

2n
— at the centre.
3
2 We can find the area of one segment by'.
using the formula. Since we are asked for the
A exact area, we should use the exact value of
sin(2—n)
A 3 ) \
J
= 487 — 363 j
7 Remember that the shaded area consists of two * .shaded area= 96w — 7243
segments. J
B\,
P
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. Exercise 10H
1. Find the length of the chord AB in each diagram.

(@) (@) (i)
B
<] (0]
1.2
A 3 cm
A B
(b) @) (i) A
(0]
58 11 cm (
A\\_/B B

2. Find the perimeters of the minor segments from
Question 1.

3. Find the areas of the minor segments from Question 1.

A circle has centre O and radius 5cm. Chord PQ subtends
angle & at the centre of the circle.

(a) Write down an expression for the area of the minor
segment.

(b) Given that the area of the minor segment is 15cm?, find
the value of 4. [6 marks]

Ll .0 - © ambﬂggg Unive Pre_s§ 2012. U o N 10 Geometry o.&!niaig_!‘es ar:é circ&s 28 "




R P Rp—

D { . Two circles, with centres A and B, intersect at points P and
' Q. The radii of the circles are 6 cm and 4 cm, and PAQ = 45°.

(a) Show that PQ=6+2—+/2.

(b) Find the size of PﬁQ.

(c) Find the area of the shaded region. [9 marks]
B
Summary
e In a right-angled triangle: 2 _sing ; b =cos¥; a_sind_ tanéd
c c cosd

-

e The angle of elevation is the angle above the horizontal.
o The angle of depression is the angle below the horizontal.

¢ To find a side length of a triangle when two angles and a side are given,
or to find an angle when two sides and a non-included angle are given,
we can use the sine rule:

a b

sinA sinB sinC

e To find a side length of a triangle when two sides and the angle
between them are given, or to find an angle when all three sides
are given, we can use the cosine rule:

¢ =a*>+b*-2abcosC ¢ b

Or:
2+ 2 _ 2
cosC:a b*—c
2ab

e The diagonal of a cuboid, p X g X , has length \/ p> + g> +72. 5 . ‘

—
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e An alternative formula for the area of a triangle is:
1
Area = 7 absinC
e To solve geometry problems in three dimensions, try to

find a suitable triangle and use one of the above formulas or
Pythagoras’ Theorem. Look out especially for right angles. A

e In a circle of radius 7, for an angle & in radians subtended at
the centre:

- arclength [=rd
— area of sector A= lrzﬂ

e Know how to derive the formulae for the length of a chord AB
and the area of a segment subtending an angle & radians at
the centre: 5

AB= 2rsin(éj
2

1
Area = Erz(ﬁ— sin )

Introductory problem revisited

Two people are trying to measure the width of a river. There is no bridge across the river,
but they have instruments for measuring lengths and angles. When they stand 50 m
apart on the same side of the river, at points A and B, the person at A measures that

the angle between line (AB) and the line from A to the tower on the other side of the
river is 25.6°. The person at B finds the corresponding angle to be 28.3°, as shown in the
diagram. Use this information to calculate the width of the river.

Draw a diagram of the triangles in the problem. We want to T
find w. There are two right-angled triangles, ACT and BCT,
but we do not know the lengths of any of their sides. However,
in triangle ABT we know two angles and one side, so we can
calculate the remaining sides. In particular, once we find the

w
length of BT, we will be able to find w from triangle BCT.
|_
A 90 B C
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P In order to use the sine rule in triangle ABT, we need to know the size of the angle opposite [AB],
namely ATB. Since ABT =180° —28.3°=151.7°, we find that ATB = 180° —25.6° —151.7° = 2.7°.

Now we apply the sine rule:

d 50

2z sin25.6° sin2.7°

50sin25.6°
d=———

- I. sin2.7°
| = 458.6
; Finally, use the right-angled triangle BCT to find the width of the river:
& w=dsin28.3°
L} =217 m(3 SF)
/
|
A
|| i
'
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Mixed examination practice 10

Short questions

In the diagram, OABC is a rectangle with sides 7cm and 2cm. PQ is a
AT
straight line. AP and CQ are circular arcs, and AOP = Pt
(a) Write down the size of C6Q.

C Tcm B
(b) Find the area of the whole shape. Q e
(c) Find the perimeter of the whole shape. _ A
[9 marks] 6
A sector has perimeter 36 cm and radius o

10 cm. Find its area. [6 marks]

In triangle ABC, AB = 6.2cm, CA = 8.7cm and ACB=37.5°, Find the
two possible values of ABC. [6 marks]

a A vertical tree of height 12 m stands on horizontal T M

ground. The bottom of the tree is at the point B.
Observer A, standing on the ground, sees the
top of the tree at an angle of elevation of 56°.

(a) Find the distance of A from the bottom
of the tree. B

12 m

Another observer, M, standAs the same distance
away from the tree, with ABM = 48°.

(b) Find the distance AM. [6 marks]

The diagram shows a circle with centre O and P/\Q

radius r = 7 cm. The chord PQ subtends angle
&=1.4 radians at the centre of the circle.

(a) Find the area of the shaded region.
(b) Find the perimeter of the shaded region.
[6 marks]
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In the diagram, O is the centre of the circle and

e The diagram shows a triangle and two

a The diagram shows two circular sectors with angle & at the centre. The
radius of the larger sector is 10 cm, the radius of the smaller sector is xcm
shorter.

(a) Show that the area of the shaded region

is given by M 10
(b) If #=1.2, find the value of x such that

the area of the shaded region is equal ‘

to 54.6 cm?. [8 marks]

=

See Prior Learning
\ / sections U and W on
- the CD-ROM for a
<1 review of properties <1
of circles and basic
trigonometry.

(AT) is the tangent to the circle at T.
T

If OA = 12 cm and the circle has a radius of 6 cm,
find the area of the shaded region. [4 marks]

(© IB Organization 2001)

arcs of circles.

The triangle ABC is a right-angled isosceles
triangle, with AB = AC = 2. The point P is the
midpoint of [BC].

The arc BDC is part of a circle with centre A.
The arc BEC is part of a circle with centre P.
(a) Calculate the area of the segment BDCP.

(b) Calculate the area of the shaded A 2 C
region BECD. [6 marks]

(© IB Organization 2003)

/
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5 o s

g A right-angled triangle has sides 12 cm and 9 cm. At each vertex, a sector
of radius 2 cm is cut out, as shown in the diagram. The angle of sector 1 is
Oradians.

(a) Write down an expression for the area
of sector 2 in terms of 6.

(b) Find the remaining area after the triangle
has had the corners removed.  [6 marks] ™

%
N
f

The perimeter of the sector shown in the
diagram is 34 cm and its area is 52 cm®.
Find the radius of the sector. [6 marks]

12 cm

In triangle ABC, AB= 243, AC=10 and
BAC =150°. Find the exact length BC. [6 marks]

In the obtuse-angled triangle KLM,
LM =6.1 cm, KM = 4.2 cm and KLM = 42°.

Find the area of the triangle. [6 marks]
K

4.2

42°
L 6.1 M

In triangle ABC, AB = 10cm, BC = 8cm and CA = 7cm.

(a) Find the exact value of cos ABC.
(b) Find the exact value of sin ABC.

(c) Find the exact value of the area of the triangle. [8 marks]

Long questions
1. Intriangle ABC, AB =5, AC = x, and BAC = &; M is the midpoint of the

side [AC].
Use the cosine rule to find an expression for MB? in terms of x and &.
Given that BC = MB, show that cos &= Z—g
If x =5, find the value of the angle & such that MB = BC. [9 marks]
© Cambridge University Press 2012. 10 Geometry of triangles and circles 291
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2. Two circles have equal radius r and intersect at points S and T. The centres
of the circles are A and B, and ASB =90°.

Explain why SAT is also 90°.

Find the length AB in terms of r.

Find the area of the sector AST.

Find the area of overlap of the two circles. [10 marks]

3. The diagram shows a circle with centre O and radius r. Chord AB subtends
an angle at the centre of size ¢ radians. The minor segment and the major
sector are shaded.

Show that the area of the minor segment

B
is %rz(ﬂ— sind) .
Find the area of the major sector.
Given that the ratio of the area of the
blue region to the area of the pink
region is 1:2, show that
3
sinfd=—-6-n
2
Find the value of 4. [10 marks] \

4. The area of the triangle shown is 2.21 cm?. The length of the shortest side is
x cm and the other two sides are 3x cm and (x + 3) cm.

Using the formula for the area of a triangle,
write down an expression for sin# in zf 0 3z
terms of x.

Using the cosine rule, write down and 13
simplify an expression for cos# in terms of x.

Using your answers to parts (a) and (b), show that,

(3x2 —2x—3)2 _1_(4.42J2
2x? 3x2
Hence find

(i) the possible values of x

(ii) the corresponding values of &, in radians, using your answer
to part (b) above. [10 marks]

(© IB Organization 2000)
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5. Intriangle ABC, AB =5, BC =10, CA =xand ACB = §.
Show that x* —20x cos &+ 75=0.

Find the range of values of cos# for which the above equation has real
solutions for x.

Hence find the set of values of & for which it is possible to construct
triangle ABC with the given measurements. [8 marks]

6. In the diagram, the points O(0,0) and A(8,6) are fixed. The angle OPA
varies as the point P(x,10) moves along the horizontal line y =10.

Y

P(x,10
(2,10 o

A (8,6)

0 (0,0)3 z

(i) Show that AP =/x? —16x+80.

(ii) Write down a similar expression for OP in terms of x.
Hence show that
x*—8x+40

cosOPA =
J(x? —16x+80)(x* +100)

Find, in degrees, the angle OPA when x=8.
Find the positive value of x such that OPA = 60°.
Let the function f be defined by
x? —8x+40

f(x)=cosOPA = ,0<x <15
J(x* =16x +80)(x* +100)

(3] Consider the equation f(x)=1.
(i) Explain, in terms of the position of the points O, A and P, why this
equation has a solution.
(ii) Find the exact solution to the equation. [17 marks]
(© IB Organization 2001)
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7. Let y=-16x2+160x —256. Given that y has a maximum value, find

(i) the value of x that gives the maximum value of y

(ii) this maximum value of y.

A The triangle XYZ has XZ = 6, YZ = x and XY = z, as shown in the diagram.
N The perimeter of triangle XYZ is 16.

(i) Express z in terms of x. Y

(ii) Using the cosine rule, express z? in
terms of x and cos Z.

A

. 5x-16
i (iii) Hence show that cosZ =2 . y Y

Let the area of triangle XYZ be A.
- ( ' Show that A% = 9x? sin® Z.
; Hence show that A? = —16x? + 160x — 256.

(i) Hence write down the maximum area for triangle XYZ.

(ii) What type of triangle is the triangle with maximum area?  [I5 marks]

8. Two circular cogs are connected by a chain as shown in Diagram 1. The
radii of the cogs are 3cm and 8 cm, and the distance between their centres
is 25cm.

Diagram 2 shows the quadrilateral O,ABO, . Line O,P is drawn parallel to AB.

- Diagram 1 Diagram 2

D O, O,
I 0

B

Write down the size of O, AB in radians, giving a reason for your answer.
Explain why PO, = AB.
Hence find the length AB.

Find the size of the angle marked &, giving your answer in radians
correct to 4 SE.

Calculate the length of the chain (shown in red in Diagram 1).  [11 marks]

i)
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What is the angle between the diagonals of a cube?

Solving problems in three dimensions can be difficult, as it is not
always straightforward to visualise the geometry. Vectors provide
a useful tool for translating geometrical properties into equations,
which can often be analysed more easily. In this chapter we will
develop techniques to calculate angles and distances in two and
three dimensions; we will also look at how vectors can be used to
describe lines in three dimensions and to find their intersections.

In this chapter you
will learn:

® to use vectors to
represent displacements
and positions in two
and three dimensions

e to perform algebraic
operations with vectors,
and understand their
geometric inferpretation

® how to calculate the
distance between two
points

® how fo use vectors to
calculate the angle
between two lines

® a new operation on
vectors, called the
scalar product

® how to describe a
straight line using vectors

e to find infersections and
angles between lines
using vector methods.

Vectors are an example of abstraction in mathematics — a single concept that can be
.M capplied to many different situations. Forces, velocities and displacements appear to
have little in common, yet they can all be described and manipulated using the rules
of vectors. In the words of the French mathematician and physicist Henri Poincaré
(1854-1912), ‘Mathematics is the art of giving the same name to different things.’

i ™)

You may know from studying physics that vectors are used

to represent quantities which have both magnitude (size) and
direction, such as force or velocity. Scalar quantities, in contrast,
are fully described by a single number. In pure mathematics,
vectors are also used to represent displacements from one point
to another, and thus to describe geometrical figures.

© Cambridge University Press 2012.
Not for printing, sharing or distribution.

11 Vectors 295

7

I A
pe

. o 8 Y7
P = Th— Q e R T 7 1 V7 Sy 1 e e o ) 1 H



B, Consider a fixed point A and another point B that is 10 cm away
trom it. This information alone does not tell you where B is; for
example, it could be any of the three positions shown in the
diagram.

The position of B relative to A can be represented by the
B, displacement vector AB. The vector contains both distance and

: direction information. We can think of AB as describing a way
. of getting from A to B.

B If we now add a third point, C, then there are two ways of
\ getting from A to C: either directly, or via B. To express t the

second possibility using vectors, we write AC = AB + BC; the
, C addition sign means that moving from A to B is followed by
k p A° moving from B to C.

Remember that while a vector represents a way of getting from
. one point to another, it does not tell us anything about the

D
/ position of the starting point or end point; nor does it provide
B

any information about what route was taken. If getting from B

ICO: A to D involves moving the same distance and in the same
direction as getting from A to B, then the displacement vectors

¥, are the same: BD = AB.

= C To return from the end point to the starting point, we have to

reverse direction; this is represented by a minus sign, so
BA = —AB. We can also use a subtraction sign between two
vectors; for example, CB— AB = CB+ BA.

To get from A to D we need to move in the same direction,

(% /'.D but twice as far, as in getting from A to B. We express this as
) : S — — 1=

4 | f / B AD =2 AB or, equivalently, AB = EAD.

Bl - °T

5 To refer to vectors conveniently, we often give them letters as

] names, just as we do with variables in algebra. To emphasise

4 that something is a vector rather than a scalar (number), we

. use either bold type or an arrow on top. When writing by hand,
X !M\“/“Nl— we use underlining instead of bold type. For example, we can

Fractions ofa denote vector AB by a (you may also see d used in some texts).

sually
vecfdor 0(;‘: rl:'\u\'ﬂp\ es, Then in the diagrams above, BD = @, BA = —a and AD = 2a.
written

1 AD rather
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Worked example 11.1 (A |

The diagram shows a parallelogram ABCD. Let AB = a and AD = b. M is the midpoint of [CD], :

and N is the point on (BC) such that CN = BC. N

Express the vectors CM, BN and MN in terms of a and b.

R ..

Think of CM as describing a way of getting from C to M by M= BA = ——g 1;
moving only along the directions of @ and b. Going from 2 2 }

C to M is the same as going half way from B to A, and :

‘1

4

<

$

we know BA = —AB.

Going from B to N involves moving twice the distance in the * BN =2BC =2b l,
same direction as from B to C, and BC=AD. =

To get from M to N, we can go from M to C and then® MN =MC +CN

from C to N. MC = —-CM and CN=BC. =—CM+BC f |
~La+b ) P8
2
\_ olana J‘f“‘*“wuwh ]'!

To make it easier to do further calculations with vectors,
we need a way of describing them using numbers, not just Ty
diagrams. You are already familiar with coordinates, which are [
used to represent positions of points. A similar idea can be used

to represent vectors.
3i+2j
Let us start by looking at displacements in the plane. Select two
directions perpendicular to each other, and let i and j denote
vectors of length 1 in those two directions. Then any vector in
the plane can be expressed in terms of i and j, as shown in the P

diagram. The vectors i and j are called base vectors.

!

~© Cambridge University Press 2012. : 7 ) e ool
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B To represent displacements in three-dimensional space, we need
three base vectors, all perpendicular to each other. They are
conventionally called i, j and k, where i represents one unit in
the x direction, j represents one unit in the y direction and k
represents one unit in the z direction. In the diagram alongside,

AB=3i+2j+4k.

Alternatively, displacements can be written as column vectors.
AB = 3i+2j+ 4k In this notation, the displacements in the diagrams above would

be expressed as PQ = (

3 . 3
2) and AB=| 2|
4

The numbers in each column are called the components of the
vector.

EXAM HINT
N —

You need o be
familiar with both
base vector an
column vector
notation, A% bo*

will be used in exam

Using components makes it easy to add displacements. In the
diagram below, to get from A to B we need to move 3 units in
the i direction, and to get from B to P we need to move 5 units
in the i direction; thus, getting from A to P requires moving a
total of 8 units in the i direction. Similarly, in the j direction we

. en . . .
qu?:?hon:swers you move —2 units from A to B and 4 units from B to P, making the
writing d hichever total movement in the j direction from A to P equal to 42 units.

can use w

notation you prefer. As the total displacement from A to P is AP = AB+ BP, we can

write (3 —2j)+(5i+4j) = 8i+2j or, in column vector notation,

))-6)

31 55+ 45
3i—2j

B 51

Reversing the direction of a vector is also simple in component
notation: to get from B to A we need to move —3 units in the

—  — (3
direction and 2 units in the j direction; thus BA = —AB = ( 2).

298 Topic 4: Vectors
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Analogous rules for adding and subtracting vectors - that is, doing
so component by component — apply in three dimensions as well.

Worked example 11.2

The diagram shows points M, N, P and Q such that MN = 3i —2j + 6k, NP =i+ j — 3k and
MQ = —2j+5k.
Write the following vectors in component form:
(a) MP
(b) PM
(c) PQ M~ 3i-2jt6k N
We can get from M to P via N« (a) MP=MN+NP j(
=(3i— 2J+6k)+(l+J 2k) \~
= 4i— j+ 3k J(
{
We have already found MP . (b) PM=-MP = —4i+ j— 3k ]
We can get from P to Q via M, using the answers * (c) PQ=PM+MQ J
from the previous parts. = (=41 + j — Bk)+ (-2 + 5k) ’
= —4i—j+2k ]
e e s A A f“““uu»«J
\. -t Wy,

EXAM HINT

As you can see from this example, vector diagrams
do not have to be accurate or to scale to be useful: a

two-dimensional sketch of a 3D situation is often enough
to show you what is going on.

We have been speaking of vectors as representing
displacements, but they can also be used to represent positions
of points. To do this, we fix one particular point, called the
origin; then the position of any point can be thought of as its
displacement from the origin. For example, the position of point
P in the diagram can be described by its position vector OP.

If we know the position vectors of two points A and B, we can o
find the displacement AB as shown in the diagram in Key point (Origin)
11.1 on the next page.
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Taking the route from A to O and then on to B, we
get AB=AO+ OB. But since AO = —OA, we find that
AB=-0A+0B=0B-O0A.

KEY POINT 11.1

If points A and B have position vectors a and b, then
AB=b-a.

EXAM HINT
A

The position vector
of point A is usud ly

deno’red by a.

- Position vectors are closely related to coordinates. As the
8y ) base vectors i, j and k are chosen to have directions along the
1 coordinate axes, the components of the position vector will
simply be the coordinates of the point.

Worked example 11.3

p
| Points A and B have coordinates (3,—1,2) and (5,0,3), respectively. Write as column vectors
2 (a) the position vectors of A and B
: _ B (b) the displacement vector AB.
- The components of the position vectors «* (a) 3 5 f
" are the coordinates of the point. a=|— b=|0
I 2 B f
(b) AB=b-a f
5 ( 3
] ~lo|-| = J
. 3) |2 |
' z 2 }
1
i ]
I\ s i bl J
) <—
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Worked example 11.4 {
3) 5 (7) 4 - I
Points A, B, C and D have position vectorsa=| -1 |,b=|0|,c=| 8|, d=[ 3| |
L 1 3 -3 )
Point E is the midpoint of [BC].
£
} s
(a) Find the position vector of E. -l
1
(b) Show that ABED is a parallelogram.
° C 4
Make a sketch to try to see what is going on. )
1
D E y
l L]
. L
{ ]
{
{
§
A B (
For part (a), we only need to look at points B, c® (a) ¢ ¢
. o . 1
and E. As we are given the position vectors, it {
will help to show the origin on the diagram. i
4
{
: i
: y)
o B f
g
§
(0] & B ‘ ."l‘l
OE = OB + BE ¢
{
—
= 0B +—BC :
‘ {
— ) 1 ¢ }
Use relationship AB=b —a =b+ E(E -b) 3 fi
1,1, f
2- 27 4
25 BB 6] j
|l o |+| 4 |=|4 J
15) =5 O
]
—
- © Cambridge U Press 2012. 11 Vi s
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F ( continued . . .

{

In a parallelogram, opposite sides are parallel <* (b) AD=d—a <
and of the same length, which means that the 4 3 1
vectors corresponding to those sides are equal. = zl=|al=| 24

So we need to show that AD =BE. 2 1) =3 3

BE=e-b y

3 o

AD = ﬁ, g0 ABED is a parallelogram. ‘J

In part (a) of the above example we derived a general formula
O 5 for the position vector of the midpoint of a line segment.

KEY POINT 11.2

The position vector of the midpoint of [AB] is %(a +b).

. Exercise 11A

The diagram shows a parallelogram ABCD with AB = a and

D N c 1.
AD = b. M is the midpoint of [BC] and N is the midpoint of
b g [CD]. Express the following vectors in terms of @ and b.
(a) (i) BC (i) AC
A a B

(b) (i) CD (ii) ND
(c) (i) AM (i) MN

P — —
! 2. In the parallelogram ABCD, AB=a and AD=b. M is the

- b /C
midpoint of [BC], Q is the point on (AB) such that
1
S - b M BQ= EAB’ and P is the point on (BC) such that
Q
_ A a B

BC:CP=3:1, as shown in the diagram.

B
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Express the following vectors in terms of @ and b.

(a) (i) AP (i) AM
(b) (i) QD (i) MQ
(c) (i) DQ (i) PQ

3. Write the following vectors in three-dimensional column
vector notation.

(@ () 4 (ii) —5j
(b) (@) 3i+k (i) 2j-

Three points O, A and B are given. Let OA = a and OB = b.
(a) Express AB in terms of a and b.
(b) Cis the midpoint of [AB]. Express OC in terms of @ and b.
(c) Point D lies on the line (AB), on the same side of B as A, so
that AD =[3AB]. Express OD in terms of @ and b. [5 marks]

Points A and B lie in a plane and have coordinates (3, 0)
and (4,2) respectively. C is the midpoint of [AB].

(a) Express AB and AC as column vectors.

— 7
(b) Point D is such that AD = (_2). Find the coordinates
of D. [5 marks]

3 4
a Points A and B have position vectors OA =| 1|andOB=| -2 |.
—2 5

(a) Write AB as a column vector.

(b) Find the position vector of the midpoint of [AB]. [5 marks]

Point A has position vector @ = 2i -3, and point D is such
that AD =i — j. Find the position vector of point D.  [4 marks]

2 1
B Points A and B have position vectorsa=| 2 [andb=| -1 |
1 3
Point C lies on [AB] so that AC : BC =2:3. Find the
position vector of C. [5 marks]
~© Cambridge U Press 2012. 11 Ve 303 .
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g Points P and Q have position vectors p =2i— j— 3k and
q=i+4j—k.
(a) Find the position vector of the midpoint M of [PQ].

(b) Point R lies on the line (PQ) such that QR = QM.
Find the coordinates of R if R and M are distinct

points. [6 marks]
2 5
Points A, B and C have position vectorsa={ -1 |, b=]1
4 2

3
and ¢ =| 1 |. Find the position vector of point D such that
4

ABCD is a parallelogram. [5 marks]

EXAM HINT
EXAT ——

The ability fo switch
between diogrcms.o\n
equations is essentia
for solving harder
vector problems-:

Vector algebra

In the previous section we used vectors to describe positions
and displacements of points in space; we also mentioned that
vectors can represent quantities other than displacements, for
example velocities or forces. Whatever the vectors represent,
they always follow the same algebraic rules. In this section we
will summarise those rules, which can be expressed using either
diagrams or equations.

4

EXAM HINT
N

Remember that
vectors only show
the relative posifions
of two points; ?hey
don't have a fixe
starting point- This
means we aré
free to 'move the

Vector addition can be done on a diagram by joining the
starting point of the second vector to the end point of the first;
the sum of the two vectors is the vector which starts at the
starting point of the first vector and ends at the end point of the
second vector. In component form, we add vectors by adding
their corresponding components. When the vectors describe
displacements, addition represents one displacement followed

second vector sO by another
that its starting point
coincides with the
) end point of the N
1 first. ANRNE
Z Hleead
n
P <
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Another way of visualising the sum of two vectors is as the
diagonal of the parallelogram formed by the two vectors being
added.

As we saw in section 11A, reversing the direction of a vector

is represented by taking its negative; in component form, this
means switching the signs of all the components. Subtracting
a vector is the same as adding its negative. It is carried out in

component form by subtracting corresponding components.
When the vectors describe displacements, subtracting a vector a-b -b
represents moving along the vector from the end point back to

the starting point.

(5 3 5) (-3 2
1= 3|=| 1l+|=3|=|-2
L—z 3] (=2 3 1

The difference of two vectors can be represented by the other
diagonal of the parallelogram formed by the two vectors.

Scalar multiplication changes the magnitude (length) of the
vector, leaving the direction the same. In component form, each
component is multiplied by the scalar. For a displacement vector
a, ka represents a displacement in the same direction but with
distance multiplied by k.

3 6
2l =5 |=|-10 2a
0 0
a
J
- © Cambridge University Press 2012. FAIT £ P IRy AL
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Two vectors are equal if they have the same magnitude and
direction. All their components are equal. They represent the
same displacements but may have different start and end points.

If two vectors are in the same direction, then they are parallel.
Parallel vectors are scalar multiples of each other, since
multiplying a vector by a scalar does not change its direction.

2 6
-3 | isparallel to | -9
1 3

2

because | -9 -3

3

—

KEY POINT 11.3

If vectors a and b are parallel, we can write b = ta for some
scalar t.

3. & The following example illustrates the vector operations we have
just described.
: Worked example 11.5
P 1 -3 )
E Given the vectorsa=|2 | b=| 4 |andc=| p
- 7 2 q

| (2) Find2a-3b.

(b) Find the values of p and g such that c is parallel to a.

8/ (c) Find the value of the scalar k such that a + kb is parallel to vector 10}

1 -3
(a) 2a-2b=2|2|-3| 4
7 2

2) (-9) (

) {e) | &

i —
F) <—
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continued . . .
If two vectors are parallel we can write v, = tv;. < (b) Write ¢ = ta for some scalar t.
Then
—2 1
pl=ti2|=|2t
q 7 7t
2=t
Two vectors being equal means that all their * oip=2t
components are equal. q="7t
p=—4q=—14
1 —3k
We can write vector @ + kb in terms of k and ** (c) @t+kb=121+1 4k |=
( 01 7 2k
then solve @+ kb =t{ 10 |
(23) 0
Farallel to | 10
25
1—-3k O
=|2+4k|=t| 10
7+ 2k 25
1-3k=0
& 24+4k=10t
7+ 2k =22t
1
We can find k from just the first equation; <* 1-2k=0=k= 5
however, we still need to check that all From 2nd eatiation
three equations can be satisfied by this 1 ™ | 1
value of k. 2+4(—)=10t:>t=—
) 2
Put values into 3rd equation:
LH6=7+2(1)=§
) )
1
RH5 =23 (g) .. satisfied
1
Solks=
2
MM
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( . Exercise 11B

7 5 1
1. Leta=| 1|, b=|-2|and c=]|1 [ Find the following vectors.
12 3 2
(a) (i) 3a (ii) 4b
(b) G) a-b (i) b+c
(c) (i) 2b+c (i) a-2b
(d) i) a+b-2c (i) 3a—-b+c

2. Leta=i+2j,b=1i—kandc=2i—j+3k.Find the

following vectors:

(a) (i) —5b (ii) 4a

(b) (i) c—a (i) a-b
(©) () a-b+2c (i) 4c—3b

3. Given that a = 4i —2j+ k, find the vector b such that
(a) a+ bisthe zero vector

(b) 2a+ 3b is the zero vector

(c) a—b=j
(d) a+2b=3i
-1 5
Given thata=| 1|andb =| 3 |, find the vector x such that
2 3
3a+4x=D>. [4 marks]

Given thata =3i—2j+5k,b=i— j+2k andc=i+k, find

the value of the scalar ¢ such thata+tb=c. [4 marks]
2 3
a Given thata=| 0 and b =| 1 |, find the value of the scalar p
2 3
3
such that g + pb is parallel to the vector| 2 |. [5 marks]
3
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Given that x =2i+3j+k and y = 4i+ j+ 2k, find the
value of the scalar A such that Ax + y is parallel to
vector j. [5 marks]

a Given thata =i— j+ 3k and b= 2gi + j+ gk, find the
values of scalars p and g such that pa+ b is parallel to
the vectori+ j+2k. [6 marks]

Distances

Geometry problems often involve finding distances between
points. In this section we will see how to do this using vectors.

Consider two points A and B such that the displacement
See section 10E on

3 )
— nding the length
between them is AB =| 1 |. The distance AB can be found <l];if theg diagonal 0? a <1
4 cuboid.
by using Pythagoras’ Theorem in three dimensions: B
AB=+/37+12 +42 =/26.
This quantity is called the magnitude of AB, and is denoted by 4
| ABJ.
If we know the position vectors of A and B, then to find the
distance between A and B we need to find the displacement
vector AB and then calculate its magnitude. N - 1
Worked example 11.6
2 5
Points A and B have position vectors @ =| —1 |and b =| 2 |. Find the exact distance AB.
5 3
The distance is the magnitude of the displciemen’r" AB=b-a ‘{
vector, so we need to find AB first. (5W 2\ 5\ 4
f
={2|-1-1l=] 3 §
l2) () (-2) f
® | :
Now use the formula for the magnitude.<® | B ‘ = (32 + 32 +(=2)% =+/22 3
4
it — e p A A re _a )
\ -
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EXAM HINT
EAAN = ——
Don't forget that

squaring ¢
number gives d
positive value.

. ive
ring @ negafv

KEY POINT 11.4

a,
The magnitude of a vector a =| a, | is|a|=+/a} +a; +a;.
a,

A useful point that is not in the Formula booklet is: the distance
between points with position vectors a and bis|b—a|.

We saw in section 11B that multiplying a vector by a scalar
(other than 0 or 1) produces a vector in the same direction

but of different magnitude. In more advanced applications of
vectors it will be useful to produce vectors of length 1, called
unit vectors. The base vectors i, j and k are examples of unit
vectors. For any vector v, the unit vector in the direction of v is
often written as v.

Worked example 11.7

2
By (a) Find the unit vector in the same direction as a = (—2 .
3 L 1
(b) Find a vector of magnitude 5 that is parallel to a.
i
To produce a vector in the same direction as a but® (a) Call the required unit vector 4. 1
P with a different magnitude, we need to multiply a Then & = ka and ‘ a ‘ =1
i by a scalar. We need to find thelvolue of |kat|=K|a|=1 )
(" this scalar. 1 p
; =>k=— d
N A :
E ] {
: |a|=v22+27+7 =3 d
. 1 §
=Y Sk=—
21 - f
i ) P . . )
Y Now find the vector &.* The unit vector is :
2 4
. 1] 2 ° 4
a=— —2 = —% ¢
-3 w 1
1 + 3
B <
$
B . To get a vector of magnitude 5, we multiply the <* (b) Let bbe parallel to a and| b| = 5. ;
5 unit vector by 5. © {
= {
Thenb=5a=| -2 ‘i
5
i ° 4
. k M-,AMM#"Jf‘NAMHP‘IJ
1; "

.-"-.
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EXAM HINT

In fact, part (b) has two possible answers, as b could be
in the opposite direction to the one we found. To get the
second answer, multiply the unit vector by -5 instead of 5.

Worked example 11.7 showed the general method for finding
the unit vector in a given direction.

KEY POINT 11.5
1

The unit vector in the same direction as a is 4= |—a.
al

. Exercise 11C

1. Find the magnitude of the following vectors in two dimensions:

4 _1 . . d . .
a=|, b= 5 c=2i—4j =—i+j

2. Find the magnitude of the following vectors in three

dimensions:
4 1

a=\1 b=| -1 c=2i—-4j+k d=j—k
2 0

3. Find the distance between the following pairs of points in
the plane.

(a) (i) A(1,2) and B(3,7) (ii) C(2,1)and D(1,2)
(b) (i) P(-L,—5)and Q(—4,2) (ii) M(1,0) and N(0,-2)

4. Find the distance between the following pairs of points in
three dimensions.

(a) (i) A(1,0,2)and B(2,3,5) (ii) C(2,1,7) and D(1,2,1)
(b) (i) P(3,—1,-5) and Q(—1,—4,2) (ii) M(0,0,2) and N(0,-3,0)
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5. Find the distance between the points with the given
position vectors:

(a) a=2i+4j—-2kandb=i-2j—6k

3 1
(b) a=| 7landb=|-2
-2 =5
2 0
(¢c) a=| O0landb=|0
-2 5

(d) a=i+jandb=j—-k

2
6. (a) (i) Find a unit vector parallel to| 2 |.
1

(ii) Find a unit vector parallel to 6i+6;j —3k.
(b) (i) Find a unit vector in the same direction asi+ j+ k.

4
(ii) Find a unit vector in the same direction as| -1 |.

22 )

Find the possible values of the constant ¢ such that the vector

2c
¢ | has magnitude 12. [4 marks]
—c
4 2
a Points A and B have position vectorsa=| 1 [andb=| -1 |.Cis
2 3

the midpoint of [AB]. Find the exact distance AC. [4 marks]

-2 2
g Leta=| 0 |and b=| —1|. Find the possible values of A such
-1 2
that|a+ Xb|=5\/5. [6 marks]
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4
(a) Find a vector of magnitude 6 that is parallel to| —1|.
1
(b) Find a vector of magnitude 3 in the same direction as
2i—j+k. [6 marks]
(1
IBM Points A and B are such that OA =| —6 |and
13
(1 2
OB=| -2 [+¢t| 1]|where O is the origin. Find the
4 -5
possible values of t such that AB = 3. [5 marks]

Points P and Q have position vectors p =i+ j+ 3k and
q=2+1)i+(1—1t)j+(1+¢)k. Find the value of ¢ for which

the distance PQ is as small as possible and find this
minimum distance. [6 marks]

Angles

In solving geometry problems, we often need to find angles
between lines. The diagram shows two lines with angle &
between them; a and b are vectors in the directions of the two
lines, arranged so that both arrows point away from the
intersection point. It turns out that cos & can be expressed in P
terms of the components of a and b.

KEY POINT 11.6

a, b,
If @ is the angle between vectorsa=| a, |andb=| b, |, then
a; b,

a,b, +a,b, +a,b,

[alle] ﬂ

) B
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Worked example 11.8

vectors AB and AC.

First, we need fo fi

N

The quantity a,b, + a,b, + asb, is called the scalar product ’

KEY POINT 11.7

T

m

See the Fill-in proof 8 ‘Deriving scalar product’ on the
CD-ROM for how to derive this result using the cosine rule.

(or dot product) of a and b and is denoted by a - b. ﬁ

Given points A(3,-5,2), B(4,1,1) and C(—L1,2), find the size of the acute angle BACin degrees.

It is always a good idea to draw a diagram. **

We can see that the required angle is between **

Use the formula w_ith
a=AB and b=AC.

nd the comonents;of.
vectors AB and AC.

.

C
A B
Let @=BAC . Then
AB-AC
6055=:
|AB||AC|
4 3 1
AB=|1|-|-5]|=| 6
1 2 —1
- 3\ (-4
AC=| 1|-|-B|=| &
2 2 O
- cosde Ix(-4)+6Xx6+(-1)x0
VP + 67 + P42 + 62 + 07
22
V3852
=0.7199
&= cos7(0.7199)
= 44.0°
r‘- H.HNHMN_,JI'"HM,_‘_‘p‘A.J

The expression in the numerator of the fraction in the formula has
some very important uses, so it has been given a special name.

‘AAM M P
a_ . — PRy, ST VS ) PP at ———

.
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The formula in Key point 11.6 makes it very straightforward to
check whether two vectors are perpendicular. If = 90°, then
cos &= 0, and so the numerator of the fraction in the formula
must be zero. We do not even need to calculate the magnitudes

of the two vectors.

KEY POINT 11.8

Two vectors a and b are perpendicular ifa-b=0.

Worked example 11.9

4

2

3

1

Given that p=| -1 [and g =

perpendicular to| 5 |

. . . .
Two vectors are perpendicular if their scalar

product equals O.

..
Write the components of p + tq in terms of tand

then form an equation.

Form and solve the equation. *

© Cambridge University Press 2012.
= hof
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2
1 |, find the value of the scalar ¢ such that p+1¢q is
1

(p+tq)- 5(=0
T
442t
pt+tq=| -1+t
T 2+t
So
44+2t) (2
—1+t|-|5|=0
2+t ) \ 1

©3(4+2t)+5(-1+t)+1(2+t)=0
S 9+12¢=0

2)
ot=-=
4

-

e
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¥

vy
|

" 3 . piecto?IJ's \.&d

1. Calculate the angle between each pair of vectors, giving your
answers in radians.

5 1 3 0
(a) (i) | 1]and]| -2 (ii) |0 ]and| —1
2 3 2 1

(b) (i) 2i+2j—kandi-j+3k
(ii) 3i+j andi—2k

© () G] and (_i) (ii) i—j and 2i+3j

2. The angle between vectors a and b is #. Find the exact
value of cos & in the following cases.

(@) ) a=2i+3j-k and b=i-2j+k
(i) a=i-3j+3k and b=i+5j—2k

2 1 5 2
(b) (i) a=|2landb=]| 1 (ii) a=| 1l|landb=] -1
3 -2 -3 2

(c) (1) a=-2kandb=4i (i) a=5iandb=3j

1
3. (i) The vertices of a triangle have position vectorsa=| 1 |,
3
2 5
b=|-1|and c=|1 |. Find, in degrees, the angles of
1 2
the triangle.

(ii) Find, in degrees, the angles of the triangle with vertices
(2,1, 2),(4,-1,5) and (7, 1, =2).

S L L iy, Aol A B T -



%A 4. Determine whether each pair of vectors is perpendicular.

2 1 3 2
(a) (1) 1|and| -2 (i) |-1]and|6
-3 2 2 0

(b) (i) 5i—2j+kand3i+4j—7k
(ii)) i—3kand2i+j+k

2
Points A and B have position vectors OA=|2|and
3
o -1
OB=| 7| Find the angle between AB and OA. [5 marks]
2

a Four points have coordinates A(2, -1, 3), B(1, 1, 2), C(6, -1, 2)
and D(7, -3, 3). Find the angle between ACandBD.  [5 marks]

Four points have coordinates A(2, 4, 1), B(k, 4, 2k),
C(k+4,2k+4,2k+2)and D(6, 2k + 4, 3).

(a) Show that ABCD is a parallelogram for all values of k.
(b) When k =1, find the angles of the parallelogram.
(c) Find the value of k for which ABCD is a rectangle. [8 marks]

a Vertices of a triangle have position vectors a =i—2j + 2k,
b=3i—j+7k and c=5i.
(a) Show that the triangle is right-angled.
(b) Calculate the other two angles of the triangle.
(c) Find the area of the triangle. [8 marks]
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All the operations with
vectors work the same
way in two and three

dimensions. If there

were a fourth dimension, so
that the position of each
point is described using four
numbers, we could use
analogous rules to calculate
‘distances’ and ‘angles’.
Does this mean that we can
acquire knowledge about a
four-dimensional world which
we can't see, or even
imagine?

Properties of the scalar product

In section 11D we defined the scalar product of vectors

al bl
a=|a, | and b=|b, | as
as b,

a-b=ab +a,b, +asb,

and we saw that if £ is the angle between the directions of a and
b, then

a-b=|a[[b|cost9
In this section we will look at various properties of the scalar
product in more detail - in particular, the algebraic rules it
follows. The scalar product has many properties similar to the
multiplication of numbers; these can be proved by using the
components of the vectors.
KEY POINT 11.9
Algebraic properties of the scalar product:
a-b=b-a
(-a)-b=—(a-b)
(ka) b=k(a b)
a-(b+c)=(a-b)+(a-c)

There are also some properties of multiplication of numbers
which do not hold for the scalar product. For example, it is not
possible to calculate the scalar product of three vectors: the
expression (a-b)- ¢ has no meaning, as a- b is a scalar, and the
scalar product involves multiplying two vectors.

Another important property of the scalar product concerns
parallel vectors.

KEY POINT 11.10

If a and b are parallel vectors, thena-b=|a||b]|.

2
In particular,a-a = ‘ a | .

The next two examples show how you can use the rules
discussed in this section.

© Cambridge University Press 2012.
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Worked example 11.10

Given that a and b are perpendicular vectors such that |a|=5 and | b|=3, evaluate
(2a—b)-(a+4b).
4
According to Key point 11.9, we** (2a-b)-(a+4b)=2a-a+8a b—b-a-4b-b \
can multiply out the brackets just as L
we would with numbers. )
[
As a and b are perpendicular, o‘ _ i
° =2a-a-4b-b f
a b=b a=0. - T i
2 @ 2 | 12 !f
Now use the fact that a-a=|a * =2|al| -4|b| 1
and similarly for b, and then =2 X52 — 4x32
substitute the given magnitudes. —14
k Aﬁ___\__,___._ﬂ,_ff“‘nu-‘.m__.m“_ﬂ' _ff‘um_‘u J

Worked example 11.11

3 3 1
Points A, B and C have position vectorsa=k| -1 |, b=| 4 |andc=|1|.
1 -2 5

(a) Find BC.
(b) Find AB in terms of k.

(c) Find the value of k for which (AB) is perpendicular to (BC).

UseBC=c—b.* (a)BC=c—-b

f‘
1 B -2 {
= 11— 4= -3 A
5 -2 7 i
Y Y |
UseAB=b-a.* (b) AB=b-a {«
8 Sk 5 — 3k
=| 4| -k|=| 4+k
-2 k —2—k
E—
- © Cambridge University Press 2012. _ =Ty : 7 DG LiNechds a8
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continued . . .

For (AB) and (BC) to be perpendicular, we must*®

b
(c) AB-BC=0 %
have AB-BC = 0. 5-2k) (-2 j
s | 4+k ||-3]=0
)3
& —0+0k—-12-2k—-14—-14k=0
& k=32

1. Evaluate a- b in the following cases.

2 5 3 -12
(a) i) a=|1|andb=|2 (i) a=|-1|andb=| 4
2 2 2 -8
2 5 3 0
(b) (i) a=|-1|andb=| -2 (ii) a=|0|and b=| 0
2 2 2 -8

() (i) a=4i+2j+kandb=i+ j+3k
(ii) a=4i-2j+kandb=i—j+3k
(d) () a=-3j+kandb=2i—4k (ii) a=-3jandb=4k

2. Given that & is the angle between vectors p and q, find the
exact value of cos &.

1 2 3 1
(a) (i) p=|1landg=]|1 (i) p=|0fandg=]|1
2 2 2 1
-1 1 -1 0
(b) (i) p=| llandg=|1 (i) p=| 1|andg=|1
2 2 0 2

e el X
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3. (i) Given that|a|:3,|b|:5 and a-b=10, find, in P :-_
degrees, the angle between a and b.
(i) Given that | c | =9,|d ‘ =12 and ¢-d = -15, find, in degrees,
the angle between c and d.

4. (a) Given that | a | =6,|b | =4 and the angle between a and
bis 37°, calculate a - b.

(b) Given that | a | =8,a-b=12 and the angle between a and b
is 60°, find the exact value of | b |

5. Giventhata=2i+ j—2k,b=i+3j—k,c=5i—3k and
d = -2j+ k verify that

(a) b-d=d-b

(b) a-(b+c)=a-b+a-c

(c) (c—d)-c=|c‘2—c~d

(d) (a+b)-(a+b)=‘a'2+\b|2+2a-b

6. Find the values of ¢ for which the following pairs of vectors
are perpendicular.

2t 1 t+1 2
(a) (1) 1|and| -2 (i) |2t—1]and]|6
—3t 2 2t 0

(b) (i) 5ti—(2+t)j+kand3i+4j—tk
(ii) ti —3k and 2ti+ j+tk

2 1 3 3
P Given thata=| -2 |,b=| 1|, c=|—-5|and d =| -3 |, calculate
1 2 1 2
(a) a-(b+c)
(b) (b—a)~(d—c)
(c) (b + d) -(2a) [7 marks]

B (a) If ais a unit vector perpendicular to b, find the value of

a-(2a-3b).
(b) If p is a unit vector making a 45° angle with vector ¢, and
p-q=32,find|q| [6 marks]

Ly - © ombii_f:lgg University Press 2012. PNy 11 Vectors 321 4
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a (a) aisavector of magnitude 3 and b makes an angle of
60° with a. Given thata - (a -b)= %, find the value of l b |
(b) Given that a and b are two vectors of equal magnitude

such that (3a + b) is perpendicular to (a — 3b), show
that a and b are perpendicular. [6 marks]

Points A, B and C have position vectors a =i—19j + 5k,
b=2)i+(\+2)j+2k andc=—6i—15j+7k.
(a) Find the value of A for which (BC) is perpendicular to (AC).
For the value of A found above, find
(b) the angles of the triangle ABC
(c) the area of the triangle ABC. [8 marks]

ABCDisa parallelogram with [AB] parallel to [DC]. Let
AB=aand AD=b.

(a) Express AC and BD in terms of @ and b.
(b) Simplify (a + b)- (b—a).

'."_' ) (¢c) Hence show that if ABCD is a rhombus, then its
diagonals are perpendicular. [8 marks]
r 2 20
Points A and B have position vectors| 1 [and| A |
P 4 4\
:: (a) Show that B lies on the line (OA) for all values of A.
- 12
i b Point C has position vector| 2 |.
| 4
g - (b) Find the value of A for which CBA is a right angle.
3,:.. (c) For the value of A found above, calculate the exact
distance from C to the line (OA). [8 marks]

Vector equation of a line

Before we can solve problems involving lines in space, we need a
z way of deciding whether a given point lies on a certain straight line.

Consider two points A(—1, 1, 4) and B(1, 4, 2); they determine a
ni( unique straight line (by ‘straight line’ we mean a line that
extends indefinitely in both directions). If we are given a third

322 Topic 4: Vectors L vy © Cambrldge University Press 2012.
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point C, how can we check whether it lies on the same
line? We can use vectors to answer this question.
For example, if C has coordinates (5, 10, —2), then

AC=| 9|=3| 3|=3AB
6] |2

This means that (AC) is parallel to (AB). But since they both
contain the point A, (AC) and (AB) must then be the same
straight line; in other words, C lies on the line (AB).

The next question is: how can we characterise all the points on
the line (AB)? Following the above reasoning, we realise that
a point R lies on (AB) if (AR) and (AB) are parallel; this can

be expressed using vectors by saying that AR = AAB for some
2\
value of the scalar A, so AR =| 31
-2\

in our example. On the

other hand, we also know that AR=r— a, where r and a are the
position vectors of R and A.

-1 2A

3\ | is the position vector of
—2A

Hencer=a+AR=| 1|+

a general point R on the line (AB). In other words, R has
coordinates (—1+2A, 143X, 4 —24) for some value of A

Different values of A correspond to different points on the line;
for example, A =0 corresponds to point A, A =1 to point B

2

3| so
-2

and A =3 to point C. The line is parallel to the vector

this vector determines the direction of the line. The expression

- © Cambridge University Press 2012. i
~ Not for printing, shol‘inglor distribution.

EXAM HINT
N —

Remember the
\nterndﬁonc\
Baccalaureate ®
notation for lines '
and line segments:
(AB) stands for the
(infinite) straight
line through A an
B, [AB] for the line
segment between
and B, and AB for
the length of [AB].

Recall that a scalar

<[ is a number without <1

direction.

See section 11B for

<[ a reminder of vector <1

algebra.

!

11 Vectors 323 :

i




F L’ﬁ P

| P; You will see that for the position vector of R is usually written in the form
. there is more than -1 2
' , |/ ]> one possible vector ]> r=| 1[+A| 3 [tomake it easy to identify the direction vector.
equation of a line. 4 -2

I n

KEY POINT 11.11

The vector equation of a line is of the form r = a + Ad
where:

r is the position vector of a general point on the line
d is the direction vector of the line

a is the position vector of one point on the line

Different values of the parameter A give the positions of
different points on the line.

Worked example 11.12

Write down a vector equation of the line passing through the point (-1, 1, 2) in the direction of
2
the vector| 2 |.
1
by f_J ()..(2) ]
_ The equation of the line is r = @+ Ld, where a is the position r=l 1l+al2 \
() vector of a point on the line and d is the direction vector. k 2 1J J
NS PRI Y i
G\ ’ y
- In two dimensions, a straight line is determined by its gradient
2 and one point. The gradient is a number that tells us the
( 1 ) direction of the line. For example, for a line with gradient 3, an
! ’ 3 increase of 1 unit in x produces an increase of 3 units in y; thus
: S . . 1
i the line is in the direction of the vector [3)
g
g . ; In three dimensions, a straight line is still determined by its
direction and one point, but it is no longer possible to use a
Z single number to represent the direction vector. The line in
2
111 Worked example 11.12 had direction vector| 2 |, which means
1

324 Topic 4: Vectors © Cambridge University Press 2012.
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<
that an increase of 2 units in x will produce an increase of z
2 units in y and an increase of 1 unit in z; we cannot describe 3
these different increase amounts by just one number. 1 y
As you know, two points determine a straight line. The next
example shows how to find a vector equation when two points s

on the line are given.

Worked example 11.13

Find a vector equation of the line through the points A(-1, 1, 2) and B(3, 5, 4).

To find an equation of the line, we need to know one <* r=a+id
point and the direction vector.
® |
@

The line passes through A(-1, 1, 2). ¢ a=| 1

Sy

\

Draw a diagram. The line is in the direction of «*

AB=b-a.

—1 4
r=| 1[+Al 4
2 2
e e

i

E aAMa s
L " g S NSNS VN NI SN —

N

What if, for ‘@’ in the formula, we had used the position vector
of point B instead? Then we would have got the equation

3 4
r=| 5 |+ A| 4 |. This equation represents the same line as the
4 2

one given as the answer to Worked example 11.13, but the
values of A corresponding to particular points will be different.

~ OCambridge University Press 2012. 11 Vedors 325
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-1 4
For example, with the equation r=| 1|+A| 4 |, point A
2 2

has A =0 and point B has A =1, while with the equation

3 4
_ r=|5[+A]| 4 |point A hasA =—1 and point B has A =0.
- 4 2

The direction vector is not unique either: as we are only
interested in its direction and not its magnitude, any (non-
zero) scalar multiple of the direction vector will also be a

(1 2) (-

direction vector. Hence| 2 | or —6) could also be used as
1 -3 J

direction vectors for the line in Worked example 11.13, and

s yet another form of the equation of the same line would be
Lo -1 —6

' r=| 1|+A|—6 | With this equation, point A has A =0 and
&) 2 -3

point B has A = _g. To simplify calculations, we usually choose

the direction vector to be the one whose components are
smallest possible integer values, although sometimes it will be
P convenient to use the corresponding unit vector.

i Worked example 11.4

-1 2 5 6
Y (a) Show that the equationsr=| 1|+A|2|and r=|7 |+ «| 6 | represent the same straight
': line. 2 1 5 3
o
-5 —4
(b) Show that the equation r =| —3 |+ t| —4 | represents a different straight line.
- 1) (-2

EXAM HINT

When a problem involves more than one line, different letters should be used for the

7 parameters in their vector equations. The most commonly used letters are A (lambdal),
4 (mu), tand s.

D <
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continued . ..

We need to show that the two lines have «*
parallel direction vectors (so that the lines
are parallel) and one common point (then
they will be the same line).
Two vectors are parallel if one is a scalar
multiple of the other (Key point 11.3).

We know that the second line contains the <
point (5, 7, 5). Now check that (5, 7, 5)
also lies on the first line: this will be the
case if we can find a value of A which,
when substituted in the equation of the
first line, will give the position vector
of (5,7, 5).

Find the value of A which gives the first <
coordinate.

Check whether this value of A also gives the <
other two coordinates.

Check whether the direction vectors are **
parallel.

Check whether (-5, =3, 1) lies on the first <*
line. Find the value of A which gives the first
coordinate.

Check whether this value of A also gives the <
other two coordinates.

(a) Direction vectors are parallel, because B

(SO
Il
[$))
- DN N

é
Show that (5, 7, D) lies on the first line: {

—1+2A=5
=A=3

1+3%x2=7
2+23x1=5

50 (5, 7, D) lies on the first line.
Hence the two lines are the same.

—4 2
®) |-4|=-2|2
-2 1

So this line is parallel to the other two.

—1+2A=-5
S>Ai=-2

1+(-2)x2=-53
2+(-2)x1=0=1
50 (=B, =3, 1) does not lie on the line.

Hence the line is not the same as the
first line.

,MMMWM

Wi il
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In the above example we used the coordinates of the point to
find the corresponding value of A. Sometimes, however, we

know only that a point lies on a given line, but not its precise
coordinates. The next example shows how we can work with a
general point on the line (with an unknown value of A).

Worked example 11.15

-1 2
Point B(3, 5, 4) lies on the line with equation #r =| 1 [+ A| 2 |. Find the possible positions of a
2 1
point Q on the line such that BQ = 15.
—1} 2] 1+ 27»} :
We know that Q lies on the line, so it has** q=| T{+A{2]=] 1+2) )
2) (1) L2+n ) {
102 |
position vector L 21J+ KL?J for some value ;;
d
of . We will find the possible values of A and f
BV hence the possible position vectors of Q. 3
— — <
Express vector BQ in terms of A and then set«® BQ=q-b 4
( its magnitude equal to 15. _—1+ O (%) (o }‘
=| 1420 |-|5|=|20-4 ¢
p 2+ A 4 A-2 f‘
% It is easier to work without square roots, so let<® |l—55‘2 =157 3
:l B us square the magnitude equation ‘ﬁ| =15. o@2r-4Y +(2h—4) +(A-2) =152 !
! S9N 361 -189=0 {
£y SA=-3or7 H
H, fod th . fQ® =7 12 ‘f
N Now we can find the position vector of Q. ~q=|-5or|15 \
B = g€ j
r.‘_f—‘_r\.__\\.“__ﬁ’" Jf-"*u-.-—-_,___‘p_‘J
\ W
1\
P
328 Topic 4: Vectors i b L v . © Cambridge University Press 2012.

L .-'I-.

~ Not for printing, sharing or distribution.
. o = T o, i




TR~ < P4y R? P T e — TRV A=

. Exercise 11F

1. Find a vector equation of the line in the given direction through
the given point.

(a) (i) Direction (i), point (4,-1)

(ii) Direction ( i), point (4,1)

1
(b) (i) Point(1,0,5), direction| 3
-3

3

(ii) Point(-1,1,5), direction| —2

2

(c) (i) Point(4,0), direction 2i+3j
(ii) Point(0,2), directioni—3j
(d) (i) Directioni—3k, point(0,2,3)
(ii) Direction 2i+3j—k, point (4,-3,0)

2. Find a vector equation of the line through the two given
points (there is more than one right answer for each part).

(a) (1) (4,1)and (1,2) (ii) (2,7) and (4,-2)
(b) (i) (-5,-2,3) and (4,-2,3) (ii) (1,1,3)and (10,-5,0)

3. Decide whether or not the given point lies on the given line.

2 -1
(a) (i) Line r=|1]|+t| 2/, point (0,5,9)
5 2
-1 4
(ii) Line r=| O [+¢| 1], point (-1,0,3)
3 5
-1 0
(b) (i) Line r=| 5|[+¢| 0], point(—1,3,8)
1 7
4 4
(ii) Line r=| 0 [+¢] O |, point (0,0,0)
3 3
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(a) Show that the points A(4,—1,—8) and B(2,1,—4) lie on

2 -1
the line / with equationr=|[ 1|+¢| 1]
—4 2

(b) Find the coordinates of the point C on the line / such that
AB =BC. [6 marks]

(a) Find a vector equation of the line / through points
P(7,1,2) and Q(3,-1,5).

(b) Point R lies on / and PR =2 PQ. Find the possible
coordinates of R. [6 marks]

a (a) Write down a vector equation of the line [ through the
point A(2,1,4) parallel to the vector 2i —3j + 6k.

(b) Calculate the magnitude of the vector 2i —3j + 6k.

(c) Find possible coordinates of the point P on / such that
AP =35, [8 marks]

Solving problems involving lines

In this section we will use vector equations of lines to solve
problems about angles and intersections.

_1” Worked example 11.16

%
' (4) 1 4 -1)
B £ Find the acute angle between the lines with equations r = L 1|+ tL dr=| 1[|+A 4J.
' 2 -2 1

4 We know a formula for the angle between two vectors ®
(Key point 11.6).

The question is which vectors to choose as our ‘a’ and ‘b’.

Drawing a diagram is a good way of identifying which ®
two vectors make the required angle.

This indicates that we should take @ and b to be the
direction vectors of the two lines.

Z

nl

P~
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continued . . .
The two vectors are in the directions of the two lines, so we *® 1 _1 “
take @ and b to be the direction vectors of the two lines. a= _51
.’ 447
Now use the formula to calculate the angle. cos 8=
J1+1 +9J1+16+1
—2
NN
L.0=98.2°
Note, however, that the angle we found is obtuse — it is the o acute angle = 180° — 98.2°
angle marked 6, in the diagram. The question asked for the =81.8°
acute angle. }

The example above illustrates the general approach to finding an
angle between two lines.

KEY POINT 11.12

The angle between two lines is the angle between their
direction vectors.

Since we only need to look at direction vectors to determine

the angle between two lines, it is easy to identify parallel and Z f’mlllel and perpen-
erpendicular lines. <] icular vectors were <]
perp covered in sections

11B and 11E.
KEY POINT 11.13

Two lines with direction vectors d, and d, are
o parallelifd, =kd,
o perpendicular ifd, -d, =0.
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Worked example 11.17

Decide whether the following pairs of lines are parallel, perpendicular, or neither:

2 4 -2 1
(@r=|-1[+A|-1|andr=| 0|+l 2
5 2 3 -3

0 2 2 1
®)r={0|+A|1|andr=|1]|+t| O

1} 1 2 -3

2) [ 4 -2 -10
(c)r=|-1|+t| 6|andr=| O|+s| 15

5 2 3 =5

Is dy a multiple of dy2* (2)

4

then
4=kx1 = k=4

1
—1=kx{(-2) = k=—
(=2) E

421
2

.. the lines are not paralle[.

sd.d, 0 [4][ ]
4|l -2|=4+2-6=0

2)\-3

A/ .. they are perpendicular.
= Is ey a multiple of dy2 S (b)
- I [

{2

2=kx1 = k=2
1=kXO impossible

SN

L‘L A Mi&‘.‘_%&& Ve R VN

.. the lines are not parallel.

N T e PSRV W
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continued . . .

2

1
|Sd|~d2=oe.. 1 ’ O
2)12

2+0+6=56+#0

.. they are not perpendicular.
The lines are neither parallel nor perpendicular.

®

Is d; a multiple of d,2 4 e

£l -6 |[=k| 15
2 -5
then

2
4=kx(-0)=k=-2

| 6=kxtBok=-2
5

2:/<><(—5)=>l<=—§
the lines have parallel directions.
-2

But they could be the same line, so we <® If the point | O | on the second line also lies
need to check this. 3

on the first line then

P W RO W R W

2+4t=—2=t=—]
H—6t=0=t=—t
6

.. they are not the same line.
The lines are parallel.

A-_..._“;A,.,f o - “‘-.-ﬂ""—-o..‘}_fr

We will now see how to find the point of intersection of two
lines. Suppose two lines /; and [, have vector equations

1, = a, + Ad, and r, = a, + ud,. If they intersect, then there is a
point which lies on both lines. As the position vector of a
general point on a line is given by r, finding the intersection of [,
and [, means finding values of A and 1 which maker, =r,.

In a plane, two different straight lines either intersect or are
parallel. However, in three dimensions it is possible to have lines
which are not parallel but do not intersect either, like the red
and blue lines in the diagram.
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Worked example 11.18

Such non-parallel, non-intersecting lines are called skew lines.

D

™ i

-

ff _.-.-,

As we shall see, if [, and [, are skew lines, we will not be able to
find values of £ and 1 such thatr, =r,.

Find the coordinates of the point of intersection of the following pairs of lines.

(@) n=

(b) n=

0 1
—4|+Al2|and 1, =
1 1
—4 1
1|+t 1] and r, =
3 4

1 4
31+ 4 -2
5 -2
2
1{+A|-3
2

Try to make i =r,.*

For two vectors to be equal, all their®
components must be equal.

We know how to solve two simultaneous **
equations in two variables. Pick any two of the
three equations. Let us use the first and third
(because subtracting them eliminates 1).

The values of A and x that we have found <
must also satisfy the remaining (i.e. second)
equation. Check whether this is the case.

(@)
o) 1 1 4
—4+A2|=|5|+u -2
1 1 B —2
O+A 1+ 4u
S| 4+20 |=|2-2u
T+ A 5-2u
[ O+A=1+4u
S—4+2M=3-2u
| 1+A=5-2u
[ A —4p=1
S22 +2u=7
I 7\‘+2//:4

(3)-()eobu=3

1
Ry
& 2

(2): 2><5+2x%= 7

.. the lines intersect

A ot intty —— A e e

(1
(@)
(%)

1
f
2
{
)
y
f

3
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continued . . .
@) 1 B
The position of the intersection point is given by «* r=|—4+3121=12
r, with the value of A we found (or r, with the 1 1 4
value of u we found - they should be the same). The lines intersect at the point (3, 2, 4).4"
§
Repeat the same procedure for the second pair *® (b)
of lines. ) 1 5 5
S+t 1= 1[+A]-3 3
2 4 1 2 <
§
t-2L=6 0 *j
olt+3h=-2 )
4t —2h=-2 (3)
. . ® 15) 14
Solve for tand A from the first two equations. ® (2)-=>r= ey
<
§
The values found should also satisfy the third <* (2) :4><E—2x(—é)= 7242
equation. 5 5) o
= the two li d t int t. k
This tells us that it is impossible to find tand A« ¢ o ines do nok inbereee
that make K =r,.

N ————— e

EXAM HINT
kxR ——

In vector problems you often need to find a point on a given
line which satisfies certain conditions. We have already seen
(in Worked example 11.15) how to use the position vector r of
a general point on the line together with the given condition to
write an equation for the parameter A. In the next example we
use more complicated conditions.

. You may be
able to use your
calculator fo solve
simu\toneouss
equations. efa
ch\cu\otor S‘\:l\\s
heet 6 on the &L~
TQCe)M for guidance
on how fo do this.
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8./ 3

0

1

1

(b) Hence find the shortest distance from A to L.

Draw a diagram. The line (AB) should be <*
perpendicular to the direction vector of /.

We know that B lies on |, so its position vector is *®

given by r.

Line [ has equation r=| —1 |+ A| —1 |, and point A has coordinates (3,9, -2).

(a) Find the coordinates of point B on / such that (AB) is perpendicular to L.

(c) Find the coordinates of the reflection of the point A in /.

(a)

o Worked example 11.19

A A_‘%M‘A\r P VIR

3+1) (3 A) <
AB:b—a.-. AB=|-1-L|-| 9|=|-10-A f
A) (-2 A+2 i
: A r 1
B We can now find the value of A for which the <® —10-A|-|-1|=0
two lines are perpendicular. A+2 L [ ﬁ
o M)+(10+1)+(A+2)=0 t
1 SAh=—4 4
| 1
Substitute the value we found for A in the <* nr=1 3
equation of the line to get the position —4 1
¥ 2 vector of B. B has coordinates (—1,3,—4) '\*
P,
—
{
D <—
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continued.. . .
) ’
The shortest distance from a point to a line is the ® 1 5 4
perpendicular distance, that is, the distance AB. = I I e
4] (2] (=2
\
~|RB|= V16 +36+4 <
=2J14
The reflection A, lies on the line (AB), with<® € A
BA; = AB. As A; and A are on opposite 43
sides of the line /, we have BA, = AB y
(draw a diagram to make this clear). ?
B
A (
BA, = AB %
—b=AB
—4) ( —
a=|-o6l+l 3 p
2] -4 1
S0 A, has coordinates (-5, -3, -6). )

s }

Part (c) of the above example illustrates the power of vectors: as
vectors contain both distance and direction information, just
one equation (BA, = AB) was needed to express both the fact
that A, is on the line (AB) and that BA, = AB.

One of the common applications of vectors is in mechanics.
You may encounter questions in which the velocity of a moving
object is given as a vector, and you have to use the information
to find positions. In such a situation, remember that the
position r of the object can be expressed as a vector equation
where the parameter represents time (and hence is usually
denoted by t) and the direction vector is the velocity vector:

r=a-+tv

In this equation, a is the position vector of the object at time
t=0.
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PCH R
P

] A ship leaves a port at (0, 1) and moves in a straight line so that after 5 hours it has reached
point (20, 5). A lighthouse is situated at point (8, 2). At what time is the ship closest to the
lighthouse, and what is the distance between them at that time?

Worked example 11.20

.. Sketch a diagram. Mark the start position <* (20.5)
P | A, the lighthouse L, and the point B at
which the boat is closest to the lighthouse. B
The line (BL) should be perpendicular
2 ) fo (AB).
L(82)
A0 1)
Write down the equation of the ship’s path «* In 5 hours, the ship has moved from (O, 1) to
in terms of time t.
1(20 4
20, D), so its velocity is v = — =
The start point has position vector a = (?), ( ), 80 its velocity is v 5( 4) (O.&)

: At time t hours, the ship has position
R and the direction vector is the velocity.

~(O)loz)(i+05)

The lighthouse has position vector

| 1=(§)

4 >

When the ship is at B, r—1 is® r—l:( 47;—{5)

2 perpendicular to the path of the ship. 0ot~

l .E- When the ship is at B,

: }

1 4

- (r—l).(018)=o
H
N Now we can solve for the value of tat<® ( 41;—8) ( 4 ): o

which the ship is at B. oet-1)108

16t -32+0.64t-0.6=0

S16.64t =325

&t =197

The ship is closest to the lighthouse 1.97
hours (1 hour and 5& minutes) after leaving

1 z port.

b =™ Nra,, e e ™ e e A A e o A e e AL A e

1\
\_ A
P <~
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continued . . .

Substitute this value for tin the equation of *
the line to find the position vector of B.

3 - -0.115
When t =197, r — 0577

So the distance from the boat to the
lighthouse at that time is

=011
— 2 2 o
‘(0577J VO.115 +O577 0588

LA \mﬁ‘-—.o..‘}‘

—at

. Exercise 11G

1. Find the acute angle between the following pairs of lines, giving
your answer in degrees.

5 2 1 4
(@ (1) r=|-1|+A|2land r=|1 [+u| -1
2 3 0 3
4 2 1 -5
(ii) r=|0|+A|-1|andr=[0|+u| 1
2 1 2

(b) (1)) r=Qi+k)—tiand r=(i+3j+3k)+5 (4i+2k)
(ii)) r=(6i+6j+2k)+t(—i+3k)and r=i+5 (4i —j+ 2k)

2. For each pair of lines state whether they are parallel,
perpendicular, the same line, or none of the above.

() r=k+AQ2i—j+3k)andr=k+pu (2i+j—k)

(b) r=(4i+j+2k)+5(—i+2j+2k)and r=(2i+j+ k)
+t (2i— 4i + 4k)

. QCambidge Univargly Press 202 o N Wt & 0y LiVeowts 3328




(A
1 3 0 3
(¢) r=|5|+A|3|and r=|0|+¢]|3
2 1 1 1
2 1 5 1
(d) r=|2|+t| -1|and r={ -1 |+5s| -1
1 3 10 3

3. Determine whether the following pairs of lines intersect; if
they do, find the coordinates of the intersection point.

6 -1 2 2

(@ (i) r=|1]|+A] 2|and r= Il+pl -2
2 1 -14 3

4 1 6 3

(i) r={-11+A] 2land r=| 2|+ x| -4

2 —4 0 0

(b) (i) r=(i—2j+3k)+t(—i+j+2k)and r=(—4i—4j— 11k)

+5(5i +j + 2k)
(ii) r=(4i+2k)+ 1t (2i+ k) and r= (=i + 2j+ 3k) +
5(i — 2i — 2j)
4 2
Line [ has equation r=| 2 |+A| -1 [, and point P
-1 2

has coordinates (7,2,3). Point C lies on [ and [PC] is
perpendicular to [. Find the coordinates of C. [6 marks]

Find the shortest distance from the point (=1,1,2) to the
line with equation r= (i + 2k) + t (=3i+j + k) [6 marks]
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-5 -3 K
a Two lines are given by [, :r=| 1|+A| 0 |and
10 4
3
L:r=| 0f+pu|1
-9

(a) [, and, intersect at P. Find the coordinates of P.
(b) Show that the point Q(5, 2, 5) lies on I,.

(c) Find the coordinates of the point M on [, such that [QM] is
perpendicular to /.

(d) Find the area of the triangle PQM. [10 marks]
1 2
Find the distance of the line with equation r =} -2 |+ A| 2
2 1
from the origin. [7 marks]
0 1 2 -1
BTwolinesllzr: —1|+A|[5]and [,:r=|2 |+t 1
2 3 1 3

intersect at point P.

(a) Find the coordinates of P.

(b) Find, in degrees, the acute angle between the two lines.
Point Q has coordinates (—1,5,10).

(c) Show that Q lies on L,.

(d) Find the distance PQ

(e) Hence find the shortest distance from Q to
the line [,. [12 marks]

g Consider the line r = (5i + j + 2k) + A (2i — 3j + 3k) and the
point P(21, 5, 10).

(a) Find the coordinates of point M on [ such that [PM] is
perpendicular to [.

(b) Show that the point Q(15,—14,17) lies on L.

(c) Find the coordinates of point R on I such
that PR = PQ. [10 marks]
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2 1
*® Two lines have equations [, :¥=| =1 [+ X| =2 | and
0 2
2 (1) .
L.r=|_1 +ul1 and intersect at point P.
2. =
Lo) L2

(a) Show that Q(5, 2, 6) lies on [,.

. E (b) Risa point on/; such that PR = PQ. Find the possible
I=1 coordinates of R. [8 marks]

( 1 Summary
o A vector represents the displacement of one point from another.

 The displacement of a point from the origin is the point’s position vector. The displacement

) between points with position vectors a and b is b — a; the midpoint between them has position
- c 1
CO: vector —(a+b).
2
YV » Vectors can be expressed in terms of base vectors i, j and k or as column vectors using
3 components.

o The vector algebra operations of addition, subtraction and scalar multiplication can be
carried out component by component, but it is also important to understand the geometric
interpretation of these operations. When solving problems using vectors, drawing diagrams

p helps us see what calculations we need to do. Three-dimensional situations can be represented
by two-dimensional diagrams, which do not have to be accurate to be useful.

_'5'3:4 o The magnitude of a vector can be calculated from the components of the vector:

|a|=Ja; +a}+a}

o The distance between points with position vectors a and b is given by |b—a |

L o The unit vector in the direction of a is |a | = La.
! .+ Theangle & between the directions of Vectorsa a and b is given by cos &= | :HI; ‘
where a - b is the scalar product, defined in terms of the components as
a-b=ab, +a,b, +a,b,
1 " » For perpendicular vectors,a-b=0.
e, o For parallel vectors, a-b = | a || b | and a =tb for some non-zero scalar .
« A vector equation of a line gives the position vectors of points on the line. It is of the form
2 r=a+Ad
ni
P <
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(2, nr D e & I " m y =

where d is a vector in the direction of the line, a is the position vector of one point on the line, = (A
and A is a parameter whose values correspond to different points on the line.

The angle between two lines is the angle between their direction vectors.
Two lines with direction vectors d, and d, are

- parallelifd, =kd,

- perpendicular ifd, - d, =0

To find the intersection of two lines with three-dimensional vector equations 1, = a, + Ad, and
r, =a, + ud,, set the position vectors equal to each other: a, + Ad, = a, + ud,. This gives three

equations (one for each component); solve two of the them to find A and p. If these values also s
satisfy the remaining equation, they give the point of intersection of the two lines; if not, the vy
lines are skew.

=i
I

Introductory problem revisited

What is the angle between the diagonals of a cube?

This problem can be solved by applying the cosine rule to one of the triangles made by the
diagonals and one side. However, using vectors gives a slightly faster solution, as we do not
have to find the lengths of the sides of the triangle. G F

The angle between two lines can be found from the direction vectors -3

of the lines and the formula involving the scalar product. We do not D E :
know the actual positions of the vertices of the cube, or even the length
of its sides. But the angle between the diagonals does not depend on the
size of the cube, so we can, for simplicity, look at the cube with side g c B
length 1 that has one vertex at the origin and sides parallel to the base Y
vectors.

We want to find the angle between the diagonals OF and AG, so we G F |
need the coordinates of those four vertices; they are O(0, 0, 0), A(1, 0, 0),
F(1, 1, 1) and G(0, 1, 1). The required angle 8is between the lines OF ; X3
and AG. The corresponding vectors are
1 -1

OF=|1|and AG=| 1 C

1 1 y

Now we can use the formula: o - \

=
<

cosf = M
[oF{aG

14141 1
B3 3

~.0=70.5°
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Mixed examination practice 11

[

[ =

Short questions

Find a vector equation of the line passing through points (3,~1,1)

and (6,0,1). [4 marks]
The diagram shows a rectangle ABCD. M is the b ¢
midpoint of [BC].
(a) Express MD in terms of AB and AD. M
(b) Given that AB=6and AD =4, show
that MD-MC =4. [5 marks] .

Points A(—1,1,2) and B(3,5,4) lie on

the line with equation P
-1 2
r=| 1|+A|2|. Find the coordinates ’
2 1 A

of point P on the same line such that AP =3 AB, as shown in
the diagram. [5 marks]

Point A(-3,0,4) lies on the line with equation r = —3i + 4k + A(2i +2j — k).
Find the coordinates of one point on the line which is 10 units from A. [6 marks]

Points A(4,1,12) and B(8,—11,20) lie on the line I.
(a) Find an equation for line /, giving your answer in vector form.

(b) The point P is on I such that OP is perpendicular to I. Find the

coordinates of P. [6 marks]
H G
a The rectangular box shown in the
diagram has dimensions 6cm X 5cm X 3cm. B B 3 em
Find, correct to the nearest one-tenth of a D
degree, the size of the angle AHC. [6 marks] C
4 cm
A 6 cm B
344  Topic 4: Vectors © Cambridge University Press 2012.
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Let o be the angle between vectors a and b, where a = (cos@)i +(sinf)j
and b =(sin0)i+(cos0)j, with 0 < &< 7/ 4. Express o in terms of &.
[6 marks]

(© IB Organization 2000)

a Given two non-zero vectors a and b such that ‘ a+b | = | a—>b|, find the
value of a - b. [6 marks]

(© IB Organization 2002)

B @ Show that (b—a)-(b—a)=|a| +|b[ —2a-b.
(b) In triangle MNP, MPN = #. Let PM = a and PN = b. Use the result from

part (a) to derive the cosine rule: MN? = PM? + PN? —2PM X PNcos&.
[6 marks]

Long questions
\?i% 1. Points A, B and D have coordinates (1,1,7), (—1,6,3) and (3,1,k), respectively.
(AD) is perpendicular to (AB).
Write down, in terms of k, the vector AD.
(»)) Show thatk =6.
Point C is such that BC = 2AD.
Find the coordinates of C.
Find the exact value of cos(AﬁC). [10 marks]

2. Points A and B have coordinates (4,1,2) and (0,5,1). Line [, passes through

41 ( 2
A and has equation r, = (1 + Al —1]. Line [, passes through B and has

) s

0 4
equationr, =| 5 |+t| —4 |
1 1

Show that the line /, also passes through A.
Calculate the distance AB.
Find the angle between /, and /, in degrees.

Hence find the shortest distance from A to [,. [10 marks]
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3. A triangle has vertices A(1,1,2), B(4,4,2) and 2 IC 6)

C(2,1,6). Point D lies on the side [AB] and

AD:DB=1:k.

&)) Find CD in terms of k.

Find the value of k such that [CD] is B
perpendicular to [AB]. k¢

For the above value of k, find the (1,1,2)
coordinates of D.

RA-

f ( Hence find the length of the perpendicular line from vertex C which passes
' through [AB]. [10 marks]

4. Point P lies on the parabola y = x? and has
x-coordinate a (a > 0). g

Write down, in terms of a, the
coordinates of P.

Point S has coordinates (0, 4).
Write down the vectors PO and PS. P

Use the scalar product to find the value
of a for which [OP] is perpendicular
to [PS]. 0 a
For the value of a found above, calculate
the exact area of the triangle OPS. [10 marks]

5. In this question, the base vectors i and j point due east and due north, respectively.

A port is located at the origin. One ship starts from the port and moves with
velocity v, =(3i+4j) km/h.
Write down the ship’s position vector at time ¢ hours after leaving port.

s A second ship starts at the same time from 18 km north of the port and moves

' with velocity v, =(3i —55) km/h.

Write down the position vector of the second ship at time ¢ hours.

.- Show that after half an hour, the distance between the two ships is 13.5 km.
(6)) Show that the ships meet, and find the time at which this happens.

How long after the ships meet are they 18 km apart? [12 marks]
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6. Attime t =0 two aircraft have position vectors 5j and 7k. The first moves ! ] .
with velocity 3i —4j + k and the second with velocity 5i +2j — k.

L "
'

Write down the position vector of the first aircraft at time .

Show that at time t, the distance d between the two aircraft is given by
d* = 441> — 88t +74.

Show that the two aircraft will not collide. .
Find the minimum distance between the two aircraft. [12 marks] 143

HE-
31+4Al -1landl,:r=

Lis)  (-s)
not intersect.

Points P and Q lie on [, and ,, respectively. (PQ) is perpendicular to

7. Show that the lines [, : r =

both lines.

(i) Write down PQ in terms of A and .

(ii) Show that 9 #—69A +147 =0. 5,
(iii) Find a second equation for A and p. )

(iv) Find the coordinates of P and the coordinates of Q.
(v) Hence find the shortest distance between [, and [,. [14 marks]

P 8. Find the vector equation of the line L through point A(-2,4,2) parallel

1
to the vectorI=| 1 |.
0
Point B has coordinates (2,3,3). Find the cosine of the angle between (AB) T3

and the line L.
Calculate the distance AB.
Point C lies on L and [BC] is perpendicular to L. Find the exact

distance AC. [10 marks]
.'! ';. ' ¥
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In this chapter you
will learn:

* how to find the
gradients of curves
from first principles —
a process called
differentiation

to differentiate x”

to differentiate
sinx, cosx and tanx

to differentiate e~
and Inx

how to find the
equations of tangents
and normals to curves
at given points

® how to find maximum
and minimum points
on curves, as well as
points of inflexion.

2
The cost of petrol consumed by a car is £(12 & 11?;)

per hour, where the speed v (>0) is measured in miles
per hour. If Daniel wants to travel 50 miles as cheaply as
possible, what speed should he go at?

| - We already met

» 3and9
Yy
y= f(z)
|
A
tangent at P

5]
:
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In real life things change: planets move, babies grow and

prices rise. Calculus is the study of change, and one of its most
important tools is differentiation, that is, finding the rate at which
the y-coordinate of a curve is changing when the x-coordinate
changes. For a straight-line graph, this rate of change was given
by the gradient of the line. In this chapter we apply the same idea
to curves, where the gradient is different at different points.

Our first task is to establish exactly what is meant by the
gradient of a function. We are clear on what is meant by the
gradient of a straight line, so we will use this idea to make a
more general definition. A tangent to a curve is a straight line
which touches the curve without crossing it. We define the
gradient of a function at a point P to be the gradient of the
tangent to the function’s graph at that point.

Note that when we say the tangent at P does not cross the curve,
we mean this in a local” sense - that is, the tangent does not
cross the curve close to the point P; it can intersect a different
part of the curve (as shown in the diagram).

© Cambridge University Press 2012.
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The derivative of a function f(x) is a function which gives the { L
gradient of y = f(x) at any point x in the domain. It is often useful
to be able to roughly sketch the derivative of a given function.

Worked example 12.1

Sketch the derivative of this function.

moving along
the curve from
left to right; we
will track the
tangent to the
curve at the
moving point
and form the

& y y
Imagine a point ¢

it e A AR A e e e, Aty e A A s Ve
=

graph C,’f s The curve is increasing, but more - 90 the gradient is positive and
gradient. and more slowly ... falling.
y y
-
x A g T
The tangent is horizontal ... ... 80 the gradient is zero. 7
— >
J 1
25
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AN

ol continued . .. y ) {
x T
|
The curve is now decreasing ... ... 80 the gradient is negative.
Y Y )
:-_u . T > z
\/
i
The tangent becomes horizontal ... so the gradient is zero.
= again ...
!
Y y
X f
- v ] !
4
4
The curve increases again, and ... 50 the gradient is positive and
does so faster and faster ... getting larger.
4 WMM

© Cambridge University Press 2012.
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We can also apply the same reasoning backwards. 11

Worked example 12.2 ‘(

The graph shows the derivative of a function. Sketch a possible graph of the original function.
)
)
T
18
Yy Yy / 1S
3 )
‘f E
$
x j
v { F s
\
X
4
y
The gradient is negative ... ... 80 the curve is decreasing. 1 S
Y Y j
1 I'.
l :
4
: f
é
4
v ]
d
$
The gradient is zero ... ... 80 the tangent is horizontal. !" Z
—
Qi
P
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1N L

| continued...
Y Y
4
xT
T
The gradient is positive ... ... 80 the curve is increasing.
y d
y {
T
'a
3 ;
é
The gradient is zero ... ... 80 the tangent is horizontal.
Y Y
o
i
T \
T
: The gradient is negative ... ... 80 the curve is decreasing.
Y ]
i T~ P,
7i ) !
" The gradient is zero ... ... 80 the tangent is horizontal. j
—

yi o © Cambridge University Press 2012.
. s Not for printing sharing or distribution.
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continued . . . I
) Y (
<
é
T
T
The gradient is positive ... ... 60 the curve is increasing. 3’

L

Note that in Worked example 12.2 there was more than one
possible graph we could have drawn, depending on where we
started the sketch. In chapter 13 you will see more about this
ambiguity when you learn how to ‘undo’ differentiation.

The relationship between a graph and its derivative can be
summarised as follows.

KEY POINT 12.1
When the curve is increasing the gradient is positive.
When the curve is decreasing the gradient is negative.

When the tangent is horizontal the gradient is zero. A
point on the curve where this occurs is called a stationary
point or turning point.

. Exercise 12A

1. Sketch the derivatives of the following, showing intercepts with

the x-axis.
(a) (i) Y / (ii) Y
3
i ‘ b
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(ii) v

xz
2
xz

(i) ¥

U
/ (3,2) N

(d) (@) (ii) y

(1,25)
/ (~1,16)
(72,3) ’

-3 "1 .

(e () { (ii) %/

(-3, 1) |, 6,1 (=2,2) (0,2) (2,2

v/\ v/\ x
(=5, —-1) (-1,-=1) (3, -1) \v/

z | (—1, —2) (17 _2)

ol

4.~
© Cambridge University Press 2012,
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) (i) Yy (ii) y /

/ T I

2. Each of the following graphs represents a function’s derivative.
Sketch a possible graph for the original function, indicating
any stationary points. C

(a) y (b) v

/1

(c) ' (d) v

o
-

Decide whether each of the following statements is always true, sometimes ¢
true or always false.

(a) Ata point where the derivative is positive the original function is
positive.

(b) When the original function is negative the derivative is also negative.

(c) The derivative crossing the x-axis corresponds to a stationary point on
the function’s graph.

(d) When the derivative is zero the graph is at a local maximum or
minimum point.
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(e) If the derivative is always positive, then part of the original
function is above the x-axis.

(f) At the lowest value of the original function the derivative
is zero.

You will probably find that drawing a tangent to a graph is quite
difficult to do accurately, and that the line you draw typically
crosses the curve at two points. The line segment between these
two intersection points is called a chord. If the two points are
close together, the gradient of the chord will be very close to
the gradient of the tangent. We can use this geometric insight
to develop a method for calculating the derivative of a given
function.

Self-Discovery Worksheet 3 ‘Investigating derivatives of
polynomials’ on the CD-ROM leads you through several
concrete examples of using this method. Here we summarise the
general procedure.

Consider a point P(x, f(x)) on the graph of the function
y = f(x), and move a horizontal distance h away from x to the

point Q(x+h, f(x+h)).
We can find an expression for the gradient of the chord [PQ]:

et
_ flx+h)— f(x)
(x+h)—x
_ flx+h)— f(x)
h

As the point Q gets closer and closer to P, the gradient of the
chord [PQ] approximates the gradient of the tangent at P more
and more closely.

To denote the distance i between P and Q approaching zero,
we use %im, which reads as ‘the limit as /& tends to zero. This
—0

idea of a limit is very much like that encountered in chapters 2
and 3 with asymptotes on graphs, where the graph approaches
the asymptote (the limit) as x tends to co.

The process of finding ng of the gradient of the chord [PQ] is
called differentiation from first principles, and we have the

following definition.

© Cambridge University Press 2012.
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KEY POINT 12.2

Differentiation from first principles

e from first principles
h | means finding the
derivative using e
definition in Key
The expression f’(x) is referred to as the derivative of f(x). hition ey
It is also written as just f’ or as y” or Y where y= f(x). The han any of the |
| o | rules we will mee

process of finding the derivative is called differentiation. in later sections.

Diﬁerenfidfion

0=t

We can use this definition to find the derivative of simple
polynomial functions.

Worked example 12.3

dy

For the function y = x?, find = from first principles.

-

Use the formula; here f(x)= x2. dy . (x+h)2 —x2 i
L
| ® ~ ,
We do not want to have the denominator go to zero, X2 4 2xh+ k2 — x2 }
so first try to simplify the numerator and hope that =fim h )
the h in the denominator will cancel out. . oxh4 b2
.. a h]—>0 h {
Now, as hoped, we can divide top and bottom by h.
= hlir]’(lJ 2x+h

.'
a

Finally, since we don’t have to worry about zero in =2x f
the denominator, we are free to let h— 0. ‘

\ Y Ry P L 4 Adms ‘_,n‘-j

Let us see how we can use the formula derived in the above example.

On the curve y = x?, at the point where x =3 the y-coordinate

dy

is 9. Now we also know from the formula —==2x that the
X
gradient at that point is 6. We could, of course, use this formula

dy

for d—to find the gradient at any point on the curve y = x2
x

1. Find the derivatives of the following functions from first principles.
(@) (i) f(x) =x3 (ii) f(x) =x*
(b) (i) f(x) =—4x (ii) f(x) =3x?
() ) f(x)=x>-6x  (ii) f(x)=x>-3x+4
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See chapter 2 if you

<[need to review the<[

L rules of exponents.
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Prove from first principles that the derivative of x* +11is 2x.
[4 marks]

Prove from first principles that the derivative of 8 is zero.
[4 marks]

If k is a constant, prove from first principles that the derivative
of kf (x) is kf"(x). [4 marks]

From Exercise 12B and the results of Self-Discovery Worksheet 3
‘Investigating derivatives of polynomials’ on the CD-ROM, it
seems that we have the following formula for the derivative of a
power function.

KEY POINT 12.3

If y= X", then d_)/ =nx""\. ﬁ
dx '
The Fill-in Proof 9 ‘Differentiating polynomials’ on the 4
CD-ROM guides you through deriving this result for positive
integer values of n; however, the formula actually holds for all

rational powers.

A special case is when n=0: the function is y = x” =1, and the

d
formula gives & —0x'=0. The geometric interpretation is that

X
the graph y =1 is a horizontal line and thus has zero gradient

everywhere. In fact, the derivative of any constant is zero (see
Exercise 12B question 3).

Often you may have to simplify a function using rules of
algebra, in particular the laws of exponents, before you can
differentiate it.

© Cambridge University Press 2012.
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Worked example 12.4

Find the derivatives of the following functions:

(a) f(x)=x*Vx

1

(b) g(x):ﬁ
®

First, rewrite the function in the form x7 using the *
laws of exponents.

@
Then use the differentiation formula. ®

()
Rewrite the function in the form x” using the
laws of exponents.

Then use the differentiation formula. ®

\

<
{
f(x)= x2Jx i

1
= xzxg f‘
o
=] ] J
4

B

,c'(x)=§x?1 i

2
5 > !
=—X2 J

2
£
(x)= N [
9(x)= 7 !
P
1 {
=X 3 f
{
1
» {

g (x)=-Zx3
d
4
L= {
3 d
e e s A »f/_‘hu-m ,._A,,A,I
J

The results of Exercise 12B questions 1(c) and 4 suggest some
properties of differentiation.

KEY POINT 12.4

o If we differentiate kf (x), where k is a constant, we get
kf’(x).

e To differentiate a sum, we can differentiate its terms one
at a time and then add up the results.

Note: you cannot
differentiate
a product k?y
differentiating
of the F(:tctorsh an
ultiplying the
rr“esu\‘:s);ogether - we
will see in chapter

each

See Fill-in Proof 9 ‘Differentiating polynomials’ on the CD-
ROM for the derivation of these rules.

The following example illustrates these properties.

© Cambridge University Press 2012.
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Find the derivatives of the following functions.

(a) f(x):5x3
(b) g(x):x4 —%xz +5x—4
_2(2x—7)

(c) hix)= 7

Differentiate x° and then multiply by 5.

Differentiate each term separately and add up
the results.

We need to write this as a sum of terms of the
form xn.

Use the laws of exponents.

Now differentiate term by term.

F(x) =5 x Bx?
=15x?

(@)

(b) g'(x)=4x5—§><2x+5+o

=4x>-3x+5

_ 2(2x-7)

Jx
_4x-—14
- 1

x2

1

© )

—4x 2 —14x2

1

=4xz —14x 2

1 1 1
()= 4x_x? 1 —14(—5)

1 3
=2x 2+7x 2

-

P A et s e 4 o A v o BT PN

N EEEEEEEEEEE—————

| P Worked example 12.5

1

1

1

——=1
X 2

e I P e VPN

. Exercise 12C

1. Differentiate the following.

(@) (i) y=x*
(b) (i) y=3x7
(c) (i) y=10

(d) (1) y=4x*-5x*+2x-8

(© () y=§xé

) @) y=7x—%x3

360 Topic 6: Calculus

(ii) y=x
(ii) y=—4x°
(i) y=-3

2

o3
(ii) y= 4x

(ii) y=2x*+3x" —x

1
(ii) y=2-5x* +Ex5

© Cambridge University Press 2012.
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(g) () y=x2 (i) y==x3
(h) (i) y=6x> (ii) yzgxa

z 3 2 1
(1) (1) y=3x4—x2+15x5—2 (11) y:xg'—gxfi +§x2

(G @) y=x" (ii) y=—x7
(K) (@) y=x2 (if) y=-8x 1
D) v=5x— i 7% i) v= _Z _g é -6
) () y=5x 15x (i) y 3x +3x
2. Find % for each of the following.
@) () y=x (i) y=3x"
(b) () y=— (i) y=-—
X 5x

© 0) y=—r (i) y=—

N YT

d) () y=x2(3x—4) (i) y=+x(x*-2x+8)

(e) (1) y=(x+2)(i’/;—1) (ii) y:(HEJ

x
. 3x° —2x . 9x2+3
0 @ y= e (i) y= I
3. Findd—y if
dx
(a) (i) x+y=8 (ii) 3x -2y =7
(b) (1) y+x+x*=0 (i) y—x*=2x

Interpreting derivatives and second

derivatives
The derivative :—y has two related interpretations:
X

e It is the gradient of the graph of y against x.

e It measures how fast y changes when x is changed, that is,
the rate of change of y with respect to x.
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d
Remember that 2 s itself a function whose value depends on x.

EXAM HINT
N

We can o\sg
write this using ‘
fynction notation:

if f(x)= X7, then
F’(X) = 2Xl

For example, if y = x?, then Ll =2x; S0 j—y is equal to 6 when
X X

x =3, and it is equal to —2 when x = —1. This corresponds to the

fact that the gradient of the graph of y = x? changes with x, or

that the rate of change of y varies with x.

so F/(3)= 6 and To calculate the gradient (or the rate of change) at any particular
point, we simply substitute the value of x into the expression

r(_ —_ —2.
f ( ‘) for the derivative.

Worked example 12.6

Find the gradient of the graph of y =4x? at the point where x = 2.
> y
{
The gradient is given by the derivative, so find d_y * Wy i
dx dx
> f
()
Substitute the given value for x. * When x =2, E
Y _tox22 =48 !
dx {
So the gradient is 456 ‘;
K e o et s 2 A Wa Vo .“““”‘HW"J

EXAM HINT

" Most calculators are not able to find the general
expression for the derivative of a function, but can find the

gradient of a curve at a specific point. See Calculator Skills
sheet 8 on the CD-ROM for instructions on how to do this.

If we know the gradient of a graph at a particular point, we
can find the value of x at that point. This involves solving

an equation involving d_y
dx
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Worked example 12.7

Find the values of x for which the graph of y =x* —7x+1 has gradient 5.

® Y

The gradient is given by the derivative. o Bx2 =7 :
)
dy ; K , |
We know the value of 1 so we can write down 32 7 =5
X . )
an equation for x and solve it. St
& xP =4 t
& x=20r =2 4
“-"’J'A‘AL,AA.,,IFA - s
- .
The sign of the gradient tells us whether the function is
increasing or decreasing.
KEY POINT 12.5
d In section 12H we
If d—y is positive, the function is increasing: as x gets will discuss  what
X >
larger, so does y. happens when
v,
dy . . . . dx
If — is negative, the function is decreasing: as x gets
x
larger, y gets smaller.

Worked example 12.8

Find the range of values of x for which the function f(x)=2x>—6x is decreasing.

A decreasing function has negative gradient. * #'(x)<0 j a

S 4x-6<0 f _
©x<15 ‘ Iz
\ et s J 1
(4
)
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You may wonder why it

is important to Y
emphasise that we are
differentiating with respect to
x (or Q or ‘monkeys’). In
this course we only consider
functions of one variable, but
it is possible to generalise
caleulus to deal with functions
that depend on several
variables. Multivariable
calculus has many
applications, particularly in
physics and engineering.

DY

J

1Y \ -,'r;n-i-" o & ,|-ﬂ— i

There is nothing special about the variables y and x. We can

just as well say that j—g is the gradient of the graph of B
d(bananas)

measures how fast the ‘bananas’
d(monkeys)

against Q or that

variable changes when you change the variable ‘monkeys.
To emphasise which variables we are using, we call % the

derivative of y with respect to x.

k" Worked example 12.9

i Given that a=-/S, find the rate of change of a when S=9.
| The rate of change is given by the derivative. «* Q= 5% ‘
lJ‘ da 1 5—%
45 2
Y B .
! 25 |
Substitute the given value for S.<® When S5=9,
} d_a i 1
45 249
_ !
| é -
\ = Y,
- d . , .
& & is an example of what is called an operator — something
X
! that acts on functions to turn them into other functions. In
, . d o
this case, the operation that — performs on a function is
X
differentiation with respect to x. For example, we can think of
(/ differentiating y = 3x? as applying the di operator to both sides
| of the equation: x
A d d
—-()=7-0%)
5 dx dx
. d
2 6x
d d
So < just means the operator — applied to y.
l X dx
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d
Since, as discussed earlier, the derivative < is itself a function
X

of x, we can also apply the I operator to it. The result is called
X

the second derivative.

KEY POINT 12.6

2
The second derivative i(d_y) is denoted by 4y or
dx\ dx dx?

f”(x) and measures the rate of change of the gradient.

The sign of the second derivative tells us whether the gradient is
increasing or decreasing.

If the gradient is increasing, the curve is said to be ‘concave-up.
If the gradient is decreasing, the curve is described as
‘concave-down.

KEY POINT 12.7

dry
dx?

If >0, the curve is concave-up.

dry
dx?

If <0, the curve is concave-down.

We can differentiate the second derivative to get the third

- d’ o : .

derivative, denoted by d—); or f”’(x), and then differentiate
X 4

jx)‘: or fW(x),

again to find the fourth derivative, written
and so on.

S X QO

concave up

<Y

N/

concave down

Worked example 12.10

Let f(x)=5x>—4x.

(a) Find f”(x).

second derivative.

\

(b) Find the rate of change of the gradient of the graph of y = f(x) at the point where x=-1.

Differentiate f(x) and then differentiate the result. ¢ (a) f'(x)=15x%-4
”(x) = 30x

The rate of change of the gradient means the ¢ (b) £”(-1)=-30

a AL

—J

«
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1.

You may consider it
paradoxical to talk “*
about the rate of

change of y as x

changes when we are fixing
x at a certain value; think of
it as the rate at which y is
changing at the instant when
x is passing through this
particular point.

J
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Write the following rates of change as derivatives.
(a) The rate of change of z as t changes.

(b) The rate of change of Q with respect to p.

(c) How fast R changes when m is changed.

(d) How quickly the volume of a balloon (V') changes over
time (7).

(e) The rate of increase of the cost of apples (y) as the average
weight of an apple (x ) increases.

(f) The rate of change of the rate of change of z as y changes.

(g) The second derivative of H with respect to m.

1
(a) (i) If f =5x3, what is the derivative of f with respect to x?

(ii) If p=3q° what is the derivative of p with respect to g?

(b) (i) Differentiate d =3¢+ 7t' with respect to .

1
(ii) Differentiate r = ¢+ — with respect to c.
c

(c) (i) Find the second derivative of y =9x* +x* with respect
to x.

3
(ii) Find the second derivative of z = " with respect to t.

(a) (i) If y=5x2find j—y when x = 3.
X

(i) 1f y=x°+L, find & when x=15,
x dx

(b) i) fA=7b+3,find % when b=-1.
N do
(ii) If 0=+ 86 3, find 10 when #=0.1.
(¢) (i) Find the gradient of the graph of A= x* when x=2.

(ii) Find the gradient of the tangent to the graph of
z=2a+a* when a=-6.
(d) (i) How quickly does f =4T? changeas T changes when
T=3?
(ii) How quickly does g = y* change as y changes when
y=2?
(e) (i) What is the rate of increase of W with respect to p
when p is =3 if W =—p*?
(ii) What is the rate of change of L with respect to ¢ when
c=6if L=7c -8
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dy

4. (a) (1) If y=ax*+ (1 - a)x where a is a constant, find —.

X

(ii) If y=x*+0b* where b is a constant, find d_y
X

(b) (i) If Q=~/ab+~/b where b is a constant, find i—Q.
a
.. 2 ) dD
(ii) If D=3(av)" where a is a constant, find o
v
d?y
5. (a) (i) If y=x*-5x,find — when x=9.

dx?

d?y

(ii) If y=8+2x" find —= when x=4.
dx?
2

) () If S=3A4? + - find L3
FRRFYE

when A=1.

2
(ii) If J =v—+/v, find % when v=09.
1%

(c) (i) Find the second derivative of B with respect to n if
B=8n and n=2.

(ii) Find the second derivative of g with respect to r
if g=r"andr=1.

6. (a) (i) Given that y=3x* and d_y =36, find x.
X

(ii) Given that y=x*+2x and j—y =6, find x.
x

(b) () T y=2x+ and ¥ = 30, find .
x dx

(ii) Tf y=~x+3 and L =L find .
dx 6

7. (a) (i) Find the interval in which x*> —x is an increasing
function.

(ii) Find the interval in which x?> +2x—5 isa
decreasing function.

(b) (i) Find the interval in which y =x* —3x? is concave-up.

(ii) Find the interval in which y = x* +5x is concave-down.

g Show that y = x* + kx + ¢ is always increasing if k> 0.
[4 marks]

g Find all points on the graph of y =x* —2x?+1 where the
gradient equals the y-coordinate. [5 marks]
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In what interval is the gradient of the graph of
y=7x—x*—x* decreasing? [5 marks]

dn
dxn

Find an alternative expression for (x™).

Differentiating trigonometric
functions

Using the techniques from section 12A we can sketch the
derivative of the graph of y =sinx. The result is a graph that
@ } looks just like y = cos x. See Fill-in Proof 11 ‘Differentiating
@ 7 trigonometric functions’ on the CD-ROM to find out why this is
the case.

The derivatives of y=cosx and y=tanx can be established in
a similar manner, giving the following results.

C
1 KEY POINT 12.8

- Whenever YoU are a(sinx) =CosX
1 doing calculus YOU
g must work in radians. a(cos x)=—sinx

| d 1
. — (tanx) =
/ dx (tanx) cos? x
..'Ir

| | It is important to remember that these formulas are valid only if
' In section 14C, we x is measured in radians. This is because they are based on the
& will derive the result assumption that the value of sinx is very close to x when x is

' > for tanx by using the [>> small; you can use your calculator to confirm that this is true for

res'ults f or differenti- x in radians but not for x in degrees.
ating sinx and cosx.

See Fill-in Proof 10 ‘Small angle approximations’ on
A the CD-ROM for a derivation of the sinx = x approximation,
B~ which is also shown on the graph on the next page.
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y It is possible to do
L ;‘** calculus using
degrees, or any
other unit for
e measuring angles, but using

radians gives the simplest

x rules, which is why they are
the unit of choice for
mathematicians.

All the rules of differentiation from section 12C apply to
trigonometric functions as well.

Worked example 12.11

Differentiate y =3tanx —2cosx.
Differentiate term by term, using the formulas in <® A _ 5( 1 )_2(_5“”) “
Key point 12.8. dx cos® X ‘
= ° +2sinx :
cos® x y
K - N W SN f!’ll ha [ J
1. Differentiate the following.
(a) (i) y=3sinx (ii) y=2cosx
(b) i) y=2x-5cosx (i) y=tanx+5
inx+2 1 1
(c) () y= SMXT £COSX (ii) y=—tanx——sinx
2 3
Find the gradient of f(x)=sinx+ x> at the point x = g
[5 marks]
1
Find the gradient of g(x)= Ztanx —3cosx—x* at the
point x = g [5 marks]
© Cambridge University Press 2012. 12 Basic differentiation and its applications 369
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Given h(x) =sinx+ cosx for 0< x <27, find the values

of x for which h’(x)=0. [6 marks]

. 1 1 .
Given y= Ztanx +— for 0 <x<2m, solve the equation
X

%zl—%. [6 marks]

Differentiating exponential and

A . :
natural logarithm functions
: Use your calculator to sketch the graphs of y =2* and
y = 3*and their derivatives. The derivative graphs look like
exponential functions too.
b y y
/8 Gradient
y=3"
."|

Gradient

T / T

il / Notice that the graph of the derivative of y =2* lies below the
graph of y =2~ itself, whereas the graph of the derivative of
y =3" lies slightly above the graph of y =3~ itself. It seems that
there should be a number a somewhere between 2 and 3 for

- which the graph of the derivative of y =a* would be exactly the
same as the graph of y=a* itself. It turns out that this number
‘@’ is e = 2.71828... which we met in section 2C.

KEY POINT 12.9

5, %(ex)zex i\

- 370 Topic 6: Calculus _ . © Cambridge University Press 2012.
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The derivative of the natural logarithm (the logarithm with 1 h
base e) y=Inx is somewhat surprising, being of a completely
different form from the original function. i

! 5

KEY POINT 12.10

d 1
20 -
dx(nx) X

See Fill-in Proof 12 ‘Differentiating logarithmic functions
graphically’ on the CD-ROM for a derivation of this result.

Worked example 12.12

Differentiate y =2e* +3Inx +4x. _
Differentiate term by term, using the formulas in*® W s 2 s J, ) S
Key points 12.9 and 12.10. o X ‘ '
Py Y M"_A,A-..P_f/- ““““ ___p~A,| 'I
. / |
. Exercise 12F p
1. Differentiate the following. .
. . 2e* .
(@) (i) y=3e" (i) y= - [
. .. 1 2
(b) (i) y=-2Inx (ii) yzglnx 8
(o) (4) y=lnTx—3x+4e" (ii)y=4—%+3lnx 5
Find the value of the gradient of the graph of
f(x):%e" —7Ilnx at the point x =In4. [2 marks]
Find the exact value of the gradient of the graph of ]
1
fx)=e - % when x = In3. [2 marks]
Z
.’(- £
S
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Find the value of x where the gradient of f(x)=5-2e* is —6.
[4 marks]

Find the interval in which e* —2x is an increasing function.
[5 marks]

There is an eas-
ier way to do some
of the parts in this

a Find the value of x at which the gradient of g(x)=x>—-12Inx
is 2. [4 marks]

question, using a
]> method from chap- ]> Differentiate the following.

f ter 14. For now, you (@) (i) y=Inx’ (ii) y=In5x
will have to rely on (b) (i) y=e*? (i) y=e*?

\| your algebra skills! ) B

: (C) (1) y — e21nx (11) y — e3lnx+2

\

See Prior Learnin The tangent to a curve at a given point is a straight line which
. S touches the curve at that point and (by definition) has the
section R on the P Y
CD-ROM for how to same gradient as the curve at that point. Therefore, if we need
; to find the equation of the tangent, we first have to know the
<] find the equation of <] d 5

gradient of the curve at that point, which can be obtained

a straight line from
t . g / by differentiating the curve function. Once we have both the
its gradient and a _ . .
. . gradient of the tangent and the coordinates of the point where
j point on the line. ;
it touches the curve, we can apply the standard procedure for
finding the equation of a straight line.
) The normal to a curve at a given point is a straight line which
{

crosses the curve at that point and is perpendicular to the
tangent at that point. Normals have many uses, such as in
finding the centres of curvature of shapes and in working out
how light is reflected from curved mirrors. In the International
Baccalaureate® you are only likely to be expected to find their
equations. To do this, use the fact that if two (non-horizontal,
non-vertical) lines are perpendicular, their gradients m, and m,
are related by m;m, = —1.

Tangent

Normal

&
x
I'I'
8]
|'
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Worked example 12.13

(a) Find the equation of the tangent to the function f(x)=cosx +e* at the
point x =0.

3
(b) Find the equation of the normal to the function g{x)=x*—5x>—x2 +22 at (4,-2).

In each case give your answer in the form ax +by +c=0, where a,b and c are integers.

We need the gradient at x = O, which is f/(0).° (a)
f’(x)=—sinx +e*
=~ (0)=-sin0+e’ =1

We also need coordinates of the point at which the ¢ When x = O,
tangent touches the graph. This is where x=0. The y=£(0)
corresponding y-coordinate is f(0). = 060 + €0
=1+1
=2
Put the information into the general equation °’ y-y=m(x—x)
of a line. y-2=1(x-0)
& y=x+2

Sx-y+2=0

The normal is perpendicular to the tangent, so find o (b)
. e 1
the gradient of the tangent at x = 4 first. F(x) = B2 —1Ox—§x5
2 By o
~f(4)=3(4) —10(4)- E(4)2
—48-40-3
=5

For perpendicular lines, mm, =—1. Therefore gradient of normal is

m=—

— LYY ‘_-% pow’ VWY N
L A_,,——“““"-t_‘_‘u;ﬁ_‘_.*‘_‘ a '\_wm e Ry . . A A e SR N

B
Both x- and y-coordinates of the point are given, o y-yi=m(x-x)
so we can put all the information into the general _
equation of a i y=(2)=2(x-4)
quation or a line. 5 f
& Dby+10=-x+4 1
S x+5y+6=0 3
)
— e e A A ff‘kAAMHWAJ
\_ .
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We summarise the procedure for finding equations of tangents
and normals as follows.

KEY POINT 12.11

EXAM HINT
EXAM
\é§ Your cc\cu\o’rgr
r?\&oy be able fo fin

the equation of the
tangent at a given

poim.

At the point on the curve y = f(x) with x =a:

e the gradient of the tangent is f”(a)

l
e the gradient of the normal is ;=

f'(a)

e the coordinates of the point are x, =a,y, = f(a)

3 ( : To find the equation of the tangent or the normal, use
R y —y, =m(x —x,) with the appropriate gradient.

Sometimes you may be given limited information about the
tangent and have to use this to find out other information.

F Worked example 12.14

B ( The tangent at point P on the curve y = x*+1 passes through the origin. Find the possible
coordinates of P.

@ .
We can find the equation of the tangent at P, but we * Let P have coordinates (p.q).
need to use unknowns for the coordinates of P.

{
4
4
° $
As P lies on the curve, (p,q) must satisfy y = x2+1.° Then q=p? +1 {f
L The gradient of the fangent is given by & * Y _ o f
e gradient of the tangent is given by —* e jl
i with x = p.
; When x=p,d—‘y=2p d
dx J
Ji. * Som= 2p 1‘
> y
i
Write down the equation of the tangent. o Equation of the tangent: y
s y-q=2p(x-p) {
{ y=(p* +1)=2p(x~p) }
’ ... 4
- The tangent passes through the origin, so set x =0 Fasses through (0.0): )
i and y =0 in the equation. 0-(p*+1)=2p(0-p) 4
© —pf—1=-2p? i
o pf = ]’
J Hence p=1or -1 f
E—
/
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continued . . .
Now find the corresponding y-coordinate q. <* When p=1, g=2
When p=-1, g=2
So the coordinates of P are (1,2)
or (-1,2).
N\

1. Find the equations of the tangent and the normal to each of the
following curves at the given point. Write your equations in the
form ax+ by +c=0.

2

(a) sz;

(b) y:3tanx—2x/isinx at x=%

at x=4

1
Find the equation of the normal to the curve y=3-— ge" at
x=2In5. [7 marks]

Find the coordinates of the point at which the tangent to the
curve y=x*—3x? at x =2 meets the curve again. [6 marks]

Find the x-coordinates of the points on the curve y = x> —3x2
where the tangent is parallel to the normal to the curve at (1,-2).
[6 marks]

Find the equation of the tangent to the curve y =e* +x which
is parallel to y = 3x. [4 marks]

a Find the coordinates of the point on the curve y=(x— 1)2 for
which the normal passes through the origin. [5 marks]

k
A tangent is drawn on the graph y = — at the point where x=a
X

(a>0). The tangent intersects the y-axis at P and the
x-axis at Q. If O is the origin, show that the area of the triangle
OPQ is independent of a. [8 marks]

e Show that any tangent to the curve y = x* —x at the point
with x-coordinate a meets the curve again at a point with
x-coordinate —2a. [6 marks]

© Cambridge University Press 2012. 12 Basic differentiation and its applications
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In real life people might be interested in maximising profits or
minimising the drag on a car. We can use calculus to describe
such goals mathematically as points on a graph.

Note that at both the maximum point and the minimum point
on the graph, the gradient is zero.

KEY POINT 12.12
To find local maximum and local minimum points, solve

the equation d =[()}
x

We use the phrases local maximum and local minimum
because it is possible that the overall largest or smallest value of
the function occurs at an endpoint of the graph, or that there are
multiple peaks or troughs on the graph. The word ‘local’ means
that each peak or trough just represents the largest or smallest
y-value in that particular ‘neighbourhood’ on the graph.

Points at which the graph has a gradient of zero are called
stationary points.

Worked example 12.15

\

7> Find the coordinates of the stationary points of y = 2x* —15x? +24x +8.

Stationary points have d_y
X

differentiate and then set the derivative equal d f

Remember to find the y-coordinate for each point. 2 When x =1: /

=0, so we need to ¢  _ 6x2 —30x + 24 y
X 4

For stationary points W O:
to zero. dax

o6x? —-30x+24=0
S x2-5x+4=0 y
o (x-4)(x-1)=0
Sx=lorx=4

y=2(1° 15012 + 24()+ & =19
When x = 4
y=2(4)° —15(4)7 +24(4)+&=-6 °

Therefore, stationary points are
(1,19) and (4, -5)

P
e s an A Pl Phue ~.,.n~)
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The calculation in Worked example 12.15 does not tell us
whether the stationary points we found are maximum or
minimum points. One way of testing for the nature of a
stationary point is to check the gradient on either side of the

d
point by substituting nearby x-values into the expression for d_y
X

. For a minimum point, the gradient goes from negative to

positive as x moves from left to right through the stationary
point; for a maximum point, the gradient changes from positive
to negative.

We can also interpret these conditions in terms of the rate of

d2
change of the gradient - that is, the second derivative d—); Ata
X
minimum point, the gradient is increasing (changing from
d’y
dx?
point, the gradient is decreasing (changing from positive to
d2
negative) and so —)2/ is negative. This leads to the following test.
X

negative to positive) and hence is positive; at a maximum

KEY POINT 12.13

Given a stationary point (x,, y, ) of a function y = f(x):

d? .

o if —}2/ <0 at x,, then (xo,yo) is a maximum
X

. d*y . .

o if ) >0 at x,, then (xo,yo) is a minimum
X

d2
o if d—}; =0at x,, then no conclusion can be drawn, so
X
d
check the sign of the gradient 2 on either side

dx
of (xo , yo)
. .. ) dy
All local maximum and local minimum points have o 0,
X
d
but the converse is not true: a point with d—y =0 does not have
X

© Cambridge University Press 2012.
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In UK English,
‘inflexion” might be o,

spelt ‘inflection’.

DY

fTRY @ F (L g = nAa Pl

to be a maximum or a minimum point. There are two other
possibilities:

The stationary points labelled (x,, y,) on the above graphs

are called points of inflexion. Note that at these points, the

line with zero gradient actually passes through the curve. The
gradient of the curve is either positive on both sides of a point
of inflexion (which is then called a positive point of inflexion,
like the one on the left-hand graph), or negative on both sides
(in which case we have a negative point of inflexion, like the one
on the right-hand graph).

If a question asks you to ‘find and classify’ the stationary points
on a curve, it means you have to find the coordinates of all

dy

points which have e 0 and decide whether each one is a

maximum point, minimum point or point of inflexion. This
may also be referred to as the ‘nature’ of the stationary points.

Worked example 12.16

Find and classify the stationary points of y =3+ 4x> —x*.

Stationary points have dy =0. — =12x% — 4x?

0‘ dy

X dx y

For stationary points j—y =10);
X

12x%2 —4x> =0

S 4x2(3-x)=0 i
Sx=0o0rx=3

378 Topic 6: Calculus
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continued . . .
Find the y-coordinates. *

Use the second derivative to determine the nature «®
of each stationary point.

d?y .‘

—~- =0, we need to check the gradient on )

A
* dx?

either side of the stationary point.

2

d’y

When

dx?

When x =0:
y=3+4(0)-(0) =3
When x = 3:
y=3+4(3)° -(3)' =30
Therefore, stationary points are
(0,3) and (3,20)

2
9 _pax—tox?
dax?
At x=0:
dzy 2
2Y —24(0)-12(0) =0
%Y - 24(0)- 12(0)

. . dy .
Inconclusive, so examine — on eithe
side of x =0: X
At x=-1:

% =12(=1)" =4 (=)’

=12+ 4
=16>0
At x=1:

2 (i) - 4

=12-4
=8>0
. (0, 3) is a positive point of inﬂexion\‘

PO YU T S TPy o S S S e s S S

p

At x=2:
Ay 2
2 _oa(3)-12(3 !
LY 24(2)-12(2)
=72-1086
=-20<0 q
-~ (3, 30) is a local maximum. }

— ‘-MHA}JW

=0, be careful not to jump to the conclusion that the

stationary point is a point of inflexion - this is not necessarily

the case, as the next example shows.

© Cambridge Unive?ity Press 2012.
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Worked example 12.17

e Find the coordinates and nature of the stationary points of f(x)=x".
Stationary points have f(x)=0.* F(x) = 4x°

¥
} For stationary points f'(x)= O:

i 4x2 =0
; ( <x=0

i °

- Find the y-coordinate. * f(0)=0

{ ! Therefore, stationary point is (O, O)

Look at f”(x) to determine the nature of the £ (x) =12x*

e e e e e e e, A A et a o pemee ™ L A s L A

stationary point.. £7(0)=0
()
A As f7(0)=0, we need to check the gradient on* Therefore, examine £'(x):
either side of x = 0. #(=1) = 4(—1)°
p =-4<0
- (1) = 4017
=4>0
= (0, 0)is a local minimum. d
e P et s 2o P f/_“‘““““‘ »-__A\"“J
\_ .

You can use stationary points to determine the range of a function.

Worked example 12.18

s - The graph shows f(x)=e* —2x. Find the range of f(x).

Pt

i

: r:m. ) . j"’

380 Topic 6: Calculus © Cambridge University Press 2012.
Not for printing, sharing or distribution.

[}: |




continued . .. } I
()
From the graph it is clear that f(x) can take any* f'(x)=e*-2
value above the minimum point. So we need to find At the minimum point f’(x)=0: i
the minimum point. e —2=0 s
et =2 d
& x=In2 4
When x =1In2,
f(x)=¢"?-2In2
=2-2In2 j

This is the minimum value of f(x), so J
the range of f(x) is

f(x)=22-2In2

NM"&‘“‘»M“—-A"J‘,—A%

See section 4B for a

<] reminder of range <]

and domain.
. Exercise 12H
1. Find and classify the stationary points on the following curves.
(a) () y=x*>-5x2 (ii) y=x*—-8x?
(b) (i) y=sinx+§, —NT<x<T
(ii) y=2cosx+1, 0<x<2m
(o) (3) yzlnx—\/; (ii) y=2e*—-5x
% Find and classify the stationary points on the curve
y=x"+3x*-24x+12. [6 marks]
Find the coordinates of the stationary point on the curve
y=x- x and determine its nature. [6 marks]
@ Find and classify the stationary points on the curve
y=sinx+4cosx in the interval 0 <x <2m. [6 marks]
1
Show that the function f(x)=Inx+ pry has a stationary point
In(k)+1
with y-coordinate & [6 marks]
A a Find the range of the function f : x> 3x* —16x> +18x? +6.
[5 marks]

© Cambridge University Press 2012. 12 Basic differentiation and its applications 381
Not for printing, sharing or distribution. -




g pPrAaTRey ¢ YUY )
s
2 Find the range of the function f:x+->e* —4x+2. [5 marks]
/ a Find in terms of k the stationary points on the curve
y = kx*+6x* and determine their nature. [6 marks]
| In the previous section we met stationary points of
i Y inflexion, but the idea of a point of inflexion is more general
than this.
\
One definition of a point of inflexion is as a point where the
\ : tangent to the curve crosses the curve at that point. This does

d
Although the re
' line actually crosses
. the graph at P, it
\ is still referred to

as the Tongem’

because it has the

same grgdienf as
| the curve of P

)
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not require the point to be a stationary point. Geometrically,
the portion of the graph around a point of inflexion can be
interpreted as an ‘S-bend’ - a curve whose gradient goes from
decreasing to increasing (as shown in the diagram) or vice
versa; this is equivalent to the curve switching from
concave-down to concave-up or vice versa. At the point of
inflexion itself, the gradient is neither decreasing nor
increasing.

KEY POINT 12.14

d?y
At a point of inflexion, =0.
dx?

Although a point of inflexion must have zero second derivative,
2

the converse is not true: just because a point has d—); =0, itis
not necessarily a point of inflexion. You can see thi)sc from the
function f(x)=x* of Worked example 12.17: at x = 0 we have
f”(x)=0,but f”(x)=12x> is positive on both sides of x = 0,
which means that the gradient is increasing on both sides;

so x = 0 is not a point of inflexion.
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Worked example 12.19

Find the coordinates of the point of inflexion on the curve y = x* —3x> +5x 1.

d’y » dy

Find =% .° 2 =3x2-6x+5
dx2 dx

2

d
At a point of inflexion 2y 0:
dx?

ox—-06=0
Sx=1

When x =1, y=1-3+5-1=2
So point of inflexion is at (1, 2)
MFM__\_“,.__A_“J/‘*AM_‘___‘

@
Remember to calculate the other coordinate! ®

LI_\#ﬂ_\.‘MAM__.,_x_\,‘-\_\,‘f

EXAM HINT

If a question states that a curve has a point of inflexion and
, , . d?
you find only one solution to the equation €Y o, you

dx? B

can then assume that you have found the point of inflexion,
2

with no need to check the sign of 37)2, on either side.

. Exercise 121

Find the coordinates of the point of inflexion on the curve
y=e* —x% [5 marks]

The curve y =x* —6x> +7x+2 has two points of inflexion.
Find their coordinates. [5 marks]

Show that all points of inflexion on the curve y =sinx lie on
the x-axis. [6 marks]
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Find the coordinates of the points of inflexion on the curve

y=2cosx+x for 0<x<2m. Justify carefully that these points
are points of inflexion. [5 marks]

The point of inflexion on the curve y =x* —ax* —bx+c isa

2
stationary point of inflexion. Show that b= —%. [6 marks]

a The graph shows y = f”(x).

)
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On a copy of the graph:

(a) mark points corresponding to a local minimum of f(x)
with an A

(b) mark points corresponding to a local maximum of f(x)
with a B

(c) mark points corresponding to a point of inflexion of f(x)
witha C. [6 marks]

12)

We now have enough tools to start using differentiation to
maximise or minimise quantities.

KEY POINT 12.15

To maximise or minimise quantity A by changing
quantity B, we follow a four-stage procedure:

1. Find the relationship between A and B.
dA
2. Solve the equation e 0 to find stationary points.

3. Determine whether each stationary point is a local
maximum, local minimum or point of inflexion by
2

checking :llBI;‘

either side of the point.

A
and, if necessary, the sign of j—B on

4. Check whether each end point of the domain is actually
a global maximum or global minimum point, and
check that there are no vertical asymptotes.

The first stage of this process is often the most difficult, and
there are many situations in which we have to make this link
in a geometric context. Fortunately, in many questions this
relationship is given to you.
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Worked example 12.20

The height h in metres of a swing above the ground at time ¢ seconds is given by
h=2-1.5sint for 0 <t < 3. Find the minimum and maximum heights of the swing.

. . —_— dh
Find stationary points. ST —15cost =0at a stationary point
= cost=0

O<t<d nt= g (only one solution)

d?h

Classify stationary points. «* yro 15sint
When £ =~
2
zh
ah =15>0:
dt?

T . .
50 t=— is a local minimum.
2

The minimum height is

h=2-15 5ing =05 metres.

TPV N Y WP VS VU Y, S U VTS VY v Y e

There are no vertical asymptotes. ¢ When t=0,h=2
Check end points. When t=3,h=179
So maximum height is 2 metres. |
i SNSRI W U G .
\. W

. Exercise 12)

b2 What are the minimum and maximum values of e* for
0<x<1? [4 marks]

A rectangle has width x metres and length 30 — x metres.
(a) Find the maximum area of the rectangle.

(b) Show thatas x changes the perimeter stays constant, and
find the value of this perimeter. [5 marks]
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Find the maximum and minimum values of the function

y=x*-9x for-2<x <5. [4 marks]

What are the maximum and minimum values of

f(x)=e*=3x for 0<x<2? [5 marks]

What are the minimum and maximum values of

10.

386 Topic 6: Calculus
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y=sinx+2x for0<x<2m? [5 marks]

Find the minimum value of the sum of a positive real
number and its reciprocal. [5 marks]

A paper aeroplane of weight w >1 will travel at a constant
1 5

N metres per second for — seconds. What

w w

weight will achieve the maximum distance travelled? [6 marks]

speed of 1—

The time ¢ in minutes taken to melt 100 g of butter
depends upon the percentage p of the butter that consists
of saturated fats, as described by the following function:
2
= p— + L +2
10000 100

Find the maximum and minimum times to melt 100g
of butter. [6 marks]

The volume V of water in a tidal lake, in millions of litres,
is modelled by V = 60cost +100, where ¢ is the time in
days after the tidal lake mechanism is switched on.

(a) What is the smallest volume of the lake?

(b) A hydroelectric plant produces an amount of
electricity proportional to the rate of flow of lake
water. During the first 6 days, when is the plant
producing the maximum amount of electricity? [6 marks]

A fast-food merchant finds that there is a relationship
between the amount of salt, s, that he puts on his fries and
his weekly sales of fries, F:

F(s)=4s+1—3s% 0<s<4.2

© Cambridge University Press 2012.
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Find the amount of salt he should put on his fries to
maximise sales.

The total cost C associated with selling the fries is
given by
C(s)=0.3+0.2F(s)+0.1s

Find the amount of salt the merchant should put on
his fries to minimise costs.

The profit made on the fries is given by the difference
between the sales and the costs. How much salt should
the merchant add to maximise profit? [8 marks]

11. A car tank is being filled with petrol such that the volume
V of petrol in the tank, in litres, after time ¢ minutes is given by

V =300(2-1*)+4, 0<t<0.5

How much petrol was initially in the tank?

(1)) After 30 seconds the tank was full. What is the
capacity of the tank?

At what time is petrol flowing into the tank at the
greatest rate? [8 marks]

12. Let x be the surface area of leaves on a tree, in m>
Because leaves may be shaded by other leaves, the amount

of energy produced by the tree is given by 2 — % k] per
square metre of leaves.

Find an expression for the total energy produced by
the tree.

(1)) What area of leaves provides the maximum energy for
the tree?

Leaves also require energy for maintenance. The total
energy requirement is given by 0.01x>. The net energy
produced is the difference between the total energy
produced by the leaves and the energy required by
the leaves. For what range of x do the leaves produce
more energy than they require?

Show that the maximum net energy is produced when

10(\5—1)'

the tree has leaves with a surface area of

[12 marks]
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Summary

o The gradient of a function at a point is the gradient of the tangent to the function’s graph at

that point.

ol A i e g T .

e The gradient of a function f(x) at point x is called the derivative and is given by

f/)=li

mf(x+hlz—f(x)

—

The process of finding the derivative of a function is called differentiation.

d d . . . ,
The derivative is also written as d_ f(x), where d_ means differentiate with respect to x’
x x

o The derivative of a sum is obtained by differentiating the terms one by one and then adding up

the results. If k is a constant, the derivative of kf(x) is kf’(x).

e The derivatives of some common functions are:

i(x”) =nx"!

dx

d .
—(sinx) = cosx
dx

—(cosx)=—sinx
dx

d

—(tanx) =

dx cos? x
d

e

d 1

= _ -
dx(nx) X

e At the point on the curve y= f(x) with x=a:

- the gradient of the tangent is f’(a)

- the gradient of the normal is —

1

f(@)

- the coordinates of the point are X, =a, y, = f (a)

The equation of the tangent or normal is y — y, = m(x —x,) with the appropriate gradient.

dy

e Stationary points of a function are points where the gradient is zero: ——=

There are four types of stationary point:

local maximum

local minimum

positive point of inflexion

negative point of inflexion

388 Topic 6: Calculus
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e To determine the type of a stationary point, we can use the second derivative. At a stationary
point (xo,yo):

d2
- if EZ <0 at x,, then (x0 , yo) is a maximum
d?y
- if o >0 at x,, then (xo, yo) is a minimum
d’y dy
- if i 0 at x,, then no conclusion can be drawn, so check the sign of the gradient -~ on
X

either side of (x,, )

e A point of inflexion is a point where the curve switches from being concave-up to being
. . . . d?
concave-down or vice versa. At a point of inflexion, d—); =0.
X
e To solve optimisation problems - that is, to maximise or minimise a function - we find and
classify the stationary points, and also check the function values at the end points of the

domain; the global maximum or minimum of a function may occur at an end point.

Introductory problem revisited

2

The cost of petrol consumed by a car is £ (12 + 11:)—0) per hour, where the speed v (>0)
is measured in miles per hour. If Daniel wants to travel 50 miles as cheaply as possible,

what speed should he go at?

We know the cost per hour and want the total cost, so we need to find the total time. The time

50 50 2 600
taken is — hours, hence the total cost is C = —(12 + v_) =—+ Z.

v v 100 v o2
We wish to minimise C. To do this, we first look for stationary points by setting — = 0:
dC 600 1
- = 4 —
dv v: o2
600 1
s ==0
v 2

< —1200+v?* =0
< v=4/1200 =34.6 (3SF)
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We take the positive square root since v > 0.
:C
—=1200v"". This is positive for

To check whether we have found a minimum point, calculate 1
V

any positive v, so the stationary point is a local minimum.
Next, to see if it is in fact the global minimum, we must consider the end points of the domain.

600
Although v is never actually zero, as it gets close to zero the — term becomes very large (the
v

v
function has a vertical asymptote at v = 0). At the other end, when v gets very large, the 5 term

gets very large. Therefore the global minimum cannot be found at either end, and so the minimum
cost is achieved at speed 34.6 miles per hour.
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Find the equation of the tangent to the curve y=e* +2sinx at the point where

x= g [5 marks]

Find the equation of the normal to the curve y=(x— 2)3 at the point where
x=2. [5 marks]

f(x) is a quadratic function taking the form x> + bx+c.If f(1)=2 and
f'(2)=12, find the values of b and c. [5 marks]

a Find the coordinates of the point on the curve y = Jx +3x where the
gradient is 5. [4 marks]

3

Find the coordinates of the point of inflexion on the graph of y = % - x> +x.
[5 marks]

4
a Find and classify the stationary points on the curve y =tanx— ?x [6 marks]

7. The graph shows y = f’(x). 1

On a copy of this graph:

) mark points corresponding to a local
minimum of f(x) withan A

mark points corresponding to a local
maximum of f{x) witha B

mark points corresponding to a point of / \ .
inflexion of f(x) witha C. [6 marks] N\ N

a On the curve y = x? a tangent is drawn from the point (4,a*) and a normal is
drawn from the point (—a,—a?). The tangent and the normal meet on the
y-axis. Find the value of a. [6 marks]

1. Theline y =24(x—1) is tangent to the curve y=ax® +bx*>+4 atx=2.
Use the fact that the tangent meets the curve to show that 2a +b=5.

Use the fact that the tangent has the same gradient as the curve to find
another relationship between a and b.
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Hence find the values of a and b.

The line meets the curve again. Find the coordinates of the other point of
intersection. [12 marks]

. 'The curve shown is part of the graph of

y=x>—-x*—x+3. y

The point A is a local maximum and the point B is
a point of inflexion.

(i) Find the coordinates of A. 4 \J
(i1) Find the coordinates of B. /.N

(i) Find the equation of the line containing
both A and B.

(ii) Find the equation of a tangent to the curve
which is parallel to this line. [10 marks]

. The population P of bacteria in thousands at a time ¢ in hours is modelled by

P=10+¢' -3t,t20

(i) Find the initial population of bacteria.

(ii) At what time does the number of bacteria reach 14 million?
() Find 2,
dt

(ii) Find the time at which the bacteria are growing at a rate of 6 million
per hour.

2
(i) Find % and explain the physical significance of this quantity.

(ii) Find the minimum number of bacteria, justifying that it is a
minimum. [12 marks]
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Basic s o erope
. ° ® how to reverse
I n teg ratl O n differentiation,

a process called
integration

an d |tS e hoflio findthe

equation of a curve
given its derivative and

applicatiOnS a point on the curve

® to integrate sin x and
COSs X

: 1
® to infegrate ex and —
X

® how to find the area

Introductory problem
Y P between a curve and

The amount of charge stored in a capacitor is given by the T

area under the graph of current (I) against time (¢). For

alternating current the relationship between I and ¢ is * how fo find the area

I = sin t; for direct current the relationship is I = k, where enclosed between two
k is a constant. For what value of k is the amount of curves.

charge stored in the capacitor from ¢ = 0 to t = 7 the same
whether alternating or direct current is used?

As in many areas of mathematics, as soon as we learn a new ]
process we must then learn how to undo it. It turns out that

undoing the process of differentiation opens up a way to solve )
a seemingly unconnected problem: how to calculate the area ]
under a curve.

Reversing differentiation

We saw in chapter 12 how differentiation gives us the gradient

of a curve or the rate of change of one quantity with another.

What if we already know the function describing a curve’s

gradient, or the expression for a rate of change, and want to

find the original function? This is the same as asking how we

can ‘undo’ the differentiation that has already taken place; the 7
process of reversing differentiation is known as integration.
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'
The integration symbol *’ .
comes from the old “* E
English way of :
writing the lefter ‘S’. :
Originally it stood for the :
word ‘sum’ (or rather, Ium ). i
As you will see later, the i
integral does indeed E
represent a sum of :
infinitesimally small :
quantities. :

— J

. @

1 1
8]
}
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Let us look at two particular cases to get a feel for this process.
Each time we will be given j—y and need to answer the question,
X

‘what function was differentiated to give this?’

Suppose that b =2x.
dx

d
Since d—y = 2x, the original function y must contain x°, as we
X
know that differentiation decreases the power by 1. In fact,
differentiating x> gives exactly 2x, so we can say that

d
if d_y =2x, then y=x%

X
d

Now suppose that Y=,
dx

1
Using the same reasoning as above, since ay = x2, we deduce

3
that the original function y must contain x2. But if we

3 1
. . z . 3 - .
differentiate x2 we will get y = Exz , so there is an extra factor
3 3
of B which we do not want. However, if we multiply x2 by 3

then when we differentiate, the coefficient will cancel to leave 1.
y 1 2 3
Therefore we can say that if —— = x2, then y = —x2.
dx 3
. cedy 2 2 2, .
Writing out ‘if o x2 then y = 5x2 is rather laborious, so we
X
use a shorthand notation for integration:

1 3

ng dx = ng

The dx states that integration is taking place with respect to

d
the variable x, in exactly the same way that — tells us that

dx

the differentiation is taking place with respect to x. We could
equally well write, for example,

[
jtzdtz—tz
3

. Find a possible expression for y in terms of x for each of the

following.
| . dy
@ () L=3p0 (i) > =5x
o dx
L dy 1 . dy 4
(b) (i) =—=-— (i) ZL=-—
dx  x? dx x5
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You may have
(c) (i) & L (ii) b . @ heard of the term
de  24x dx  3Yx? ‘differential equation’.
L dy L dy The equations in Question 1
(d) () o 10x* (ii) e 12x? are the simplest types of
differential equation.
We have seen how to integrate some functions of the form x”
by reversing the effects of differentiation. However, the process
as carried out above was not quite complete.
Let us consider again the example j—y = 2x, where we stated that C
X
J.2x dx = x? ™

because the derivative of x? is 2x. But besides x?, there are other
functions which when differentiated give 2x, for example x* + 1

3
or x* — g This is b%cause when we differentiate the additional

constant (+1 or _g) we just get zero. So we could write

J.Zx dx=x2+1
or

ij dxzxz—g

and both of these answers would be just as valid as J.Zxdx =x7
In fact, we could have added any constant to x% without further
information we cannot know what constant term the original

function had before it was differentiated.

Therefore, the complete answers to the integrals considered in

section 13A should be

J2x dx=x*+c

1 2 3
sz dngx2 +c

where c represents an unknown constant of integration. We
will see later that, given further information, we can find the

value of this constant.

We will see how to
determine the con-
IE stant of integration &

in section 13E

Give three possible functions which when differentiated

with respect to x give the following.
(a) 37 (b) ©
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2. Find the following integrals.

(@) (i) [7x*dx (i) [4xdx

(b) () [ dt (i) [&dy

We will see how

]>to integrate x™' in]>

section 13D.

EXAM HINT
N —

The +cisan
essential part of t:\e
answer; you mus

write it every time.

EXAM HINT
A

This rule holds
on\y “' k isa

constant — @ number
or expression that
does not change
with the integration

variable.

396  Topic 6: Calculus

4

Rules of integration

First, let us think about how to reverse the general rule of

differentiating a power function.
d
We know that if y = x", then ay =nx"", or in words:

To differentiate x", multiply by the old power and then decrease
the power by 1.

The reverse of this process is:

To integrate x", increase the power by 1 and then divide by the
new power.

Using integral notation, the general rule for integrating x" is
expressed as follows.

KEY POINT 13.1
1
J.x” dx=——x""+¢
n+1

This holds for any rational power n # —1.

Note the condition n# —1 which ensures that we are not
dividing by zero.

It is worth remembering the formula for integrating a constant:
J.k dx = kx + ¢, which is a special case of the above rule

k
with n =0: jkdx = kao dx=—x"+c

1

When we differentiate a function multiplied by a constant k,
we get k times the derivative of the function (Key point 12.4).
Reversing this gives the following rule for integration:

KEY POINT 13.2

Jif () dx =k [ £ (x) dx

As we can differentiate term by term (Key point 12.4), we can
also split up integrals of sums and do them term by term.

© Cambridge University Press 20°
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KEY POINT 13.3 [l

For the sum of integrals:

Jf (x)+ g(x)dx = J.f(x) dx + .[g(x) dx

Be warned — You
cannot infegrate
roducts or
yotients by 3
integrating eac '
part separately: f

By combining Key point 13.3 and Key point 13.2 with
k = -1, we can also show that the integral of a difference is the
difference of the integrals of the separate terms.

These ideas are demonstrated in the following examples.

Worked example 13.1 ¢

Find (@) [ox* dx  (b) [(3x-8x ¥ +2)d

.. — 6 3+ '; J
Add one to the power and divide by (2) J@x o dx = 211 Tte ] |
the new power. § S
=S—%25E ' 5
— ,‘J
=-3x2+¢ { } 1
¥
. 4 1 —
Go through term by term, adding ¢ (b) ,[57‘4 —8X 7 +2 dx b e
one to the power of x and dividing 3 8 4, }
by the new power. = mx‘*” TR 2x+c / _
Remember the special rule for 5 s ; ‘ S
infegrating a constant. =Zx5—— x3+2x+c¢ f )
5 1 ] N
. . . |
:gx5+24x5+2x+c ) 3]
Y p——e e e p PV o W N VY
\_ A
Just as for differentiation, it may be necessary to manipulate 5
terms into the form kx" before integrating. )
Worked example 13.2 ﬂ
x—3) =]
Find (a) [5x23/x dx  (b) j( J_) dx
x
> )
Write the cube root as a power * (a) J5X2 Yx dx= J5x2x3 dx
and use the laws of exponents to 7 '§
combine the two powers. =J5x3 dx J { A
>
-
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continued . . . .
) 10
J Dividing by ?(which is from %+ 1) =5X %xg te {
E is the same as multiplying by 0" = _xg iy
] .’ 2
. Expand the brackets first, then use ® ) J(x_5) dx:sz —6x+9 .
: rules of exponents to write as a Jx 2
I sum of powers. zj'ﬁ_Gx 2 ]
: [ B 4
= Jx% —6x7 +9x7% dx /
1l Dividing by a fraction is the
same as multiplying by its*® 2 s z :
reciprocal. =gx? —OX—x"+9X2x" +¢ :
2 \
5

$ 1 . Exercise 13C
1. Find the following integrals

(@ () [ox'dx i) [12xdx
() (i) [rdx (i) [xdx
i . " 1
l (©) (i) [9dx (i) [5dx
7 (d) (i) [3x°dx (i) [ox*dx
/ () () [3vxdx (i) [3%xdx
. 5 .. 2
O 0 [ (i) [ dx
" EXAM HINT
Do not neglect the dx or equivalent in the integral; it tells
you what letter represents the variable — see Questions 2
y and 3, for example. We will make more use of it later.
You can think of the function you are integrating as being
multiplied by ‘dx’, so sometimes you will see integrals
i written as, for instance, J'st".
e
ol 2. Find the following integrals
(@) () [3dt (i) [7de
g 1398  Topic 6: Calculus . © ~ Cambridge
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®) () [a°dg (i) [rodr
(© () [12g°dg (i) [5y2dy
@ @ [4+3 a [°F

3. Find the following integrals.
(@ () J@-x+2de (i) [x'-2x+5dx

11 1 1
O 0 [5rpad G [ -ax
© ) [edxdx @[22 ax
(d @ f(x+1)3 dx (ii) jx(x+2)2dx

Find H—dex. [4 marks]

Integrating x~' and e*

We can now integrate x" for any rational power n with one

1
exception: in the formula _[x” dx = —lx'“f1 + ¢ we had to
n+
exclude n = —1. How, then, do we cope with this case?
d 1
In section 12F we learned that d—(ln x)=— (Key point 12.10).
X x

Reversing this gives the integration rule for x'.
KEY POINT 13.4

For x>0,

_[x’ldx=lnx+c

d
We also learned in section 12F that a(ex) = e (Key point

12.10), which gives the following formula for integration.
KEY POINT 13.5

J.e’“d.x=ex+c ﬂ’

© Cambridge University Press 2012. 13 Basic integration and its applications 399
~ Not for printing, sharing or distrib fion. I

Faa)




P{.!

o/

Find the integral IHTx dx.

X

()

Divide each term of the numerator®
by the denominator x to split it into
two terms.

3i is the same as ! X —.

Use Key point 13.4 to integrate the ¢
first term.

g : L
"

X

1 b
=—lhx+—+c

o ‘L'winnNJQM_—HIH_-q\_.,ﬁ_k‘_“1),AF-*AMM—»m

e

P Worked example 13.3

. Exercise 13D

1. Find the following integrals.

(@) () [%dx (i)
() (i) [ dx (i)
(© () [+ dx (i)
(@ () [=dx (i)
. Find the following integrals.
(@) (i) [5erdx (ii)
() (i) [%" dx (i)
(© () [ d (i)

3

x

1

3x dx

2345
255 d

f—";f dx

J.9e"dx
s ax

(¥ +x7)
Jieia

400 Topic 6: Calculus

Integrating trigonometric functions

We will expand the set of functions that we can integrate by
continuing to refer back to chapter 12. In section 12E we saw

d
that d—(sinx) = cosx (Key point 12.8), which means that
X

© Cambridge University Press 2012.
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d .
Jcos x dx =sinx + ¢. Similarly, since E (cosx)=—sinx, we

also have Jsinx dx=—-cosx+c.

KEY POINT 13.6

Jsinx dx=—cosx+c¢

.[cosx dx=sinx+c¢ @

1. Evaluate the following integrals.
(@) (i) Jsinx —cosx dx (ii) J.3cosx +4sinx dx

) Q) J-x +sinx dx (ii) J-x/; +6cosx dic
() (i) [1-(cosx+sinx)dx
(ii) j cos x —2(cos x — sin x)dx
Find [n(cosx—1)dx. [3 marks]
Find Jﬂ dx. [5 marks]

COSX —Ssinx

d
We have seen how, given d_)’ we can integrate it to find the
X

equation of the original curve, except for the unknown constant
of integration. Geometrically, this means that the gradient
determines the shape of the curve, but not exactly where it is.
However, if we also know the coordinates of a point on the
curve (essentially ‘fixing’ the curve at a certain position), then
we can determine the constant and hence specify the original
function precisely.

=2

. . dy . . . \ c=0 /
Consider again the example o 2x discussed in sections 13A \ Lo
x

and 13B. We found that the original curve must have equation
y = x* + ¢ for some value of the constant c. Each different value
of c gives a different curve, but all these graphs have the same
shape (a parabola symmetric about the y-axis) and are related
to one another by vertical translations; they form a family of

© Cambridge University Press 2012. 13 Basic integration and its applications 401
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curves. Now, if we are also told that the curve passes through

the point (1,—1), then we can substitute these x and y values into
the equation, find ¢, and thus specify which curve of the family
our function corresponds to.

Worked example 13.4

(1,—4). Find the equation of the curve.

To find y from dy we need fo
X integrate.
Don't forget + c.

v - The coordinates of the given points®
must satisfy this equation, so we
s can find c.
'
o

d
The gradient of a curve is given by d_y =3x? —8x+5, and the curve passes through the point
X

y=j5x2—8x+5 dx

=x?—-4x*+5x+¢c

When x=1, y=—4, s0
—4 =) -4 +5(1)+¢
= 4=1-4+5+c¢
=c=—0
SLy=x2—-4x*+bx—-06

Py
Y.

.

The above example illustrates the general procedure for finding the

equation of a curve from its gradient and a point on the curve.

KEY POINT 13.7

]
L0 )

402 Topic 6: Calculus

J‘IilJ.Jj"‘ e

DNMteesd Saan Tl x b A

To find the equation for y given the gradient d_y and one
point (p,q) on the curve: dx

d
e Integrate o to get an equation for y in terms of x,

dx

remembering +c.

e Find the value of ¢ by substituting x=p and y=¢q into
the equation.

e Rewrite the equation, putting in the value of ¢ that was
found.

© Cambridge University Press 2012.
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1. Find the equation of the original curve if:

(a) (i) j—y = x and the curve passes through (-2,7)
x

(ii) j—y = 6x2 and the curve passes through (0, 5)

x
N dy 1
(b) (i) —% =—= and the curve passes through (4, 8)
dx \/_
L dy 1
(ii) e = — and the curve passes through (1,3)
x

X
(o) (@) j—y =2e* +2 and the curve passes through (1, 1)
X
ay

(ii) j = e* and the curve passes through (In5,0)
x
(d) (3) d_y = x+l and the curve passes through (e, e)
X X
ody 1
(ii) d_ e and the curve passes through (e, 5)
x

X
(e) (i) d_y = cos x + sin x and the curve passes through (m, 1)
X
a _

(ii) j = —3sinx and the curve passes through (0, 4)

X

1
The derivative of the function f(x) is P
(a) Find an expression for all possible functions f(x).

(b) If the curve y = f(x) passes through the point (2, 7), find the
equation of the curve. [5 marks]

The gradient of a curve is found to be j—y =x?—4.
x

(a) Find the x-coordinate of the maximum point, justifying
that it is a maximum.

(b) Given that the curve passes through the point (0, 2), show

that the y-coordinate of the maximum point is 75.
[5 marks]

A curve is defined only for positive values of x, and the
gradient of the normal to the curve at any point is equal to the

x-coordinate at that point. If the curve passes through the point

(¢,3), find the equation of the curve in the form y =1In g(x)
where g(x) is a rational function. [6 marks]

© Cambridge University Press 2012.
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Until now we have been carrying out a process called indefinite
/ integration: indefinite in the sense that we have an unknown

B o

1
constant each time, for example sz dx = §x3 +c.

There is also a process known as definite integration, which
yields a numerical answer. To calculate a definite integral,
we evaluate the indefinite integral at two points and take the
difference of the results:

3 1 3
- 2d =[_ 3+ —|
o J.zx X L3x CJ2
: 1 1
' =|=3+c|-|=2°+
\ CRDR R
” 1
] =6-
\ 3

| Note that the constant of integration, ¢, cancels out in the
subtraction, so we can omit it altogether from the definite
integral calculation and just write

r 3
3 [1 ;
J x?dx = —x3—]
A z 37 L,
() )
3 3
t 1
=6-—.
3
) The numbers 2 and 3 here are known as the limits of
integration; 2 is the lower limit and 3 is the upper limit.
. ~

Make sure you know how to evaluate definite integrals
on your calculator. See Calculator Skills sheet @ on the
CD-ROM for guidance on how to do this.

Besides saving you time, your calculator can help

you evaluate integrals that you dont know how to do
algebraically. And even when you are asked to find the
exact value of the integral, it is still a good idea to

use your calculator to check the answer.

(! A=
1 We could calculate the definite integral of x* with any numbers
e aand b as the lower and upper limits; the answer will, of course,
5] depend on a and b:
| b

b 1

J. x2dx = [— x3:|
a 3 a
IR
: 303
404  Topic 6: Calculus © Cambridge University Press 2012.
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The integration variable x does not come into the answer - it
has taken on the values of the limits and is referred to as a
‘dummy variable’

The square bracket notation indicates that integration has taken
place but the limits have not yet been applied. ‘Applying the
limits” just means to evaluate the integrated expression at the
upper limit and subtract the integrated expression evaluated at
the lower limit.

Worked example 13.5

el
Find the exact value of L —+4dx.
X

e 1 :
Integrate and write in square ® L T +4dx =[Inx +4x];
brackets.
Evaluate the integrated expression * = (In(e) + 4(e)) = (In(1)+ 4(1))
at the upper and lower limits and = (14 4¢)— (0 +4)
subtract the lower from the upper.
=4e-3

ol - Y e i NPT TP Y e — .,w:'
. .

\ A

AN AN,

. Exercise 13G

%A 1. Evaluate the following definite integrals, giving exact answers.

6 4
(@) () [ d () | x+xdx
/2 27
® @) [Teosxds ) [Tonxds
© () [ e dx () [ 3edr
© Cambridge Univi 13 Basic integration and its applications 405
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2. Evaluate the following definite integrals.

@ () [ Vxdx (ii) jj‘l% dx
®) (i) jolexzdx (i) [Inxdx

Find the exact value of the integral jﬂn e* +sinx +1dx. [5 marks]

Show that the value of the integral J.;k% dx is independent

of k. [4 marks]
Ifj: f(x) dx =7, evaluate ng F(x)+1dx. [4 marks]
a Solve the equation J.la\/? dt =42. [5 marks]

_406 Topic 6: Calculus

Geometrical significance of definite
integration

Now we have a method that gives a numerical value for an
integral, the natural question to ask is: what does this number
mean? The answer is that the definite integral represents the

b
area under a curve; more precisely, J f(x) dx is the area
a

enclosed between the curve y = f(x), the x-axis, and the lines
x=aandx=b.

KEY POINT 13.8

A=['F(x) dx

© Cambridge University Press 2012.
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See Fill-in proof 14 “The fundamental theorem of calculus’ on
the CD-ROM for a justification of this result. Strictly speaking,

it holds only if the graph lies above the x-axis, but we shall see
later how we can also find areas associated with graphs that go
below the x-axis.

In the 17th century the integral was defined as the area under a curve. The region under
& the curve y =f(x) was broken down into thin rectangles, each with height f(x) and
width being a small distance in the x direction, written Ax. The total area can be
approximated by the sum of the areas of all these rectangles.
The height of the first rectangle is f(a) and its width is Ax, so its

area is Axf(a). 4
The height of the second rectangle is f(a+ Ax), so its area
is Axf(a+Ax). 9= f(ﬁéé/
-
This pattern continues until the final rectangle with left edge =
at b— Ax, which has area Axf(b—-Ax).
Thus, the area under the curve is approximately
[f(a)+f(cH—Ax)+f(a+2Ax)+---+f(b—Ax)]Ax
which can be written more briefly, in sigma notation
(see chapter 6), as a i *
x=b- Ax
Y, f(x)Ax The ancient Greeks had
x=a already developed
This approximation to the area gets better as the rectangles ideas of limiting
become thinner and more numerous. If we take the limit as processes similar to
the width of the rectangles becomes very small (Ax — 0), those used in calculus, but it
while their number tends to infinity, we should be able to obtain  took nearly 2000 years for
the exact area under the curve. the ideas to be formalised.

This was done almost
simultaneously by Isaac
Newton and Gottfried
Leibniz in the 17th century.
Was this a coincidence, or is
it often the case that a long
b eriod of slow progress is
L igg)es Eeeded to reocll:: ogstoge of
readiness for major
breakthroughs?
Supplementary sheet 13
looks at some other people

who made contributions to ,
the development of calculus.

Isaac Newton, one of the pioneers of calculus, was a big fan of
writing in English rather than Greek. ‘Sigma’ became the English
letter ‘S” and “delta’ became the English letter ‘d’, so when the
limit Ax — O is taken, the expression for the sum of rectangle
areas becomes

This illustrates another very important interpretation of
integration — as the infinite sum of infinitesimally small parts.

© Cambridge University Press 2012. 13 Basic integration and its applications 407
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Worked example 13.6

- Find the exact area enclosed between the x-axis, the curve y =sinx and the lines x =0
T
L and x = —.
D, ’
()
" Sketch the graph and identify the ® y
¥ area required. y = sin x

- p—
——
w|x

N

4
.l

L Z e —t A pav AN, _AAM e

o Integrate and write in square * A= Jma@inx = [—coex]gm
brackets. ¢
i o =( ~cos% | ~(~c0s0)
i Evaluate the integrated expression * =| —cos = cos
1 at the upper and lower limits and 1
i subtract the lower from the upper. = _EH
1
|Il - 2
" Y PPV f‘“—“—‘-‘ “‘**“"-&A-‘IJ,.“‘““'—-‘;___‘
] I\

EXAM HINT

" IFyou sketch the graph on a calculator, you can get it
to shade and evaluate the required area, as explained

on Calculator Skills sheet 9 on the CD-ROM. If it is not
already given in the question, you should show the sketch
as part of your working.

When the curve is entirely below the x-axis the integral will
give us a negative value. In this case, the modulus of the definite
integral is the area bounded by the curve and the x-axis.

408 Topic 6: Calculus © Cambridge University Press 2012.
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Worked example 13.7 : | !

Find the area A in the diagram. y 1 )
y=a(z—1)(2-2) Ll
:
I‘lr-
0 X
A 1
C

o i d
Write down the integral we need, * J.Ox(x -1)(2-x)dx =-0.25 (by GDC)
then use the calculator to evaluate it. f; J
The area must be positive. * s A=0.25 S,
St o e A Y i s s ao A 4/‘/-”A" Y AN Y
L J ' |
Unfortunately, the relationship between integrals and areas is 1
not so simple when there are parts of the curve above and below I
the x-axis. Those parts above the axis contribute positively to
the area, but portions below the axis contribute negatively to the |
=
area. Therefore, to calculate the total area enclosed between the
curve and the x-axis, we must separate out the sections above Iq

the axis and those below the axis.

Worked example 13.8 b
o

> (a) Find J.l x> —4x+3dx. [J
(b) Find the area enclosed between the x-axis, the curve y =x?—4x+3 and the =1
lines x =1and x = 4.
—
(A
r
© Cambridge University Press 2012. 13 Basic integration and its applications 409 .
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continued . . .

Integrate and evaluate at the upper **
and lower limits.

1 The value found above cannot be **

]l '

\J the area asked for in part (b).
Sketch the curve to see exactly

what area we are being asked to

find.

The required area is made up of two*®
parts, one below the axis and one

% above, so evaluate each of them

separately.

(a) J‘4

1 X2 —4x+3dx

I
r—
[

1 4
—x% —=2x% + 5x:|
1

1 B _ 2 _ i 9 __ 2
_(5(4) 2(4) +5<4)) (50) 20 + (1)

3

K

&
J x2—4x+5dx=-—x5—2x2+5x]
1 L5

(3

4

3

1

4
.. area below the axis is g

4

4 1
L X* —4x+3dx = |:gx5 —2x*? +5x:|

(o

2]

|
!
|
|
i
{

4
.. area above the axis is 5

4 4 8
Total area = —+—=—
5 & &

TN e WOV
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The integral being zero in part (a) of the example means that
the area above the x-axis is exactly cancelled by the area below

the axis.

As you can see from the example above, when you are asked
to find an area it is essential to sketch the graph and identify
exactly where each part of the area is. The area bounded by

y = f(x), the x-axis and the lines x=a and x=0b is given by

jb f{x) dx only when f(x) is entirely positive between a and b.

If the curve crosses the x-axis somewhere between a and b,

then we have to split up the integral and find each piece of area

separately.

If you are evaluating the area on your calculator, you can use the
modulus function to ensure that all parts of the area are counted

as positive:

Area = Jub|f(x)| dx

1. Find the shaded areas.

@ () 3

i (i)

(b) (@) v

(ii)

y=a>—4r+3

© Cambridge University Press 2012.
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See Prior Learning
Section I if you are
unfamiliar with the
modulus  function
<1 and Calculator Skills <1
Sheet 3 for how

to find it on your
calculator.
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Y ii Y
y=a—x (if) y=a%— 3z

The area enclosed by the x -axis, the curve y= Jx and the line
x = k is 18. Find the value of k. [6 marks]

(a) Find j: x? —1dx.

EXAM HINT
ExAT ——

’F'md the aread
enclosed’ m'eons

to first identin

a closed region
bounded b\/' the
curves mentlor}e /
and then find s

a. A sketch is @

(b) Find the area between the curve y =x? —1 and the x -axis
between x =0 and x = 3. [5 marks]

Between x =0 and x = 3, the area of the graph y = x> —kx
below the x-axis equals the area above the x-axis. Find the

value of k. [6 marks]
are

very useful tool Find the area enclosed by the curve y =7x—x>—10 and
the x-axis. [7 marks]
\ The area between two curves

So far we have considered only areas bounded by a curve and
the x-axis, but it is also useful to be able to find areas bounded
by two curves.

The area A in the diagram can be found by taking the area
under y = f(x) and subtracting the area under y = g(x),
that is,

A= fla)de-[ glx) dx

It is usually easier to do the subtraction before integrating, so
that we only have to integrate one expression instead of two.
This gives an alternative formula for the area.

412 Topic 6: Calculus © Cambridge University Press 2012.
T — ' ' Not for printing, sharing or distribution.
[ 7 - [ !




KEY POINT 13.9

The area bounded above by the curve y = f(x) and below
by the curve y = g(x) is

b
A :L |f(x)— g (x)|dx

where a and b are the x-coordinates of the intersection
points of the two curves.

Worked example 13.9

% Find the area A enclosed between y=2x+1 and y=x>-3x+5.

@ . .
First find the x-coordinates of ® For intersection:

intersection. X2 —Bx4+5=2x+1

& x?2-bx+4=0
S(x-1)(x—-4) =0
S x=14

()
Make a rough sketch to see the ®
relative positions of the two curves.

4 ‘
Subtract the lower curve from the ®® A= (2x+1)—(x* —Bx +5)dx
higher before integrating.

pVy Py
e . Iy S i vV VORI T G V VO

3 2 1
B}
3\ © 2
N P TN e SOV S J’-'mMJJ
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Subtracting the two equations before integrating is particularly
convenient when one of the curves is partially below the
x-axis: as long as f(x) is above g(x), the expression we are
integrating, f(x)— g(x), will always be positive, so we do not
have to worry about the signs of f(x) and g(x) themselves.

'
\ Worked example 13.10

Find the area bounded by the curves y =e* -5 and y=3—x>

(
' Sketch the graph to see the relative ¢ Using GDC:
Y| l positions of the two curves.
=
e

4 [

Find the intersection points — use * Intersections: x = —2.818 and1.65&
i the calculator.
. ()
(- Write down the integral that*
i 1.658
represents the area. Area :J. (3—x%)—(e* —5)dx
- I 2818
3 1658
= (&—x2—e*)dx
2818

Evaluate the integral using the * = 216 (3 &F) using GDC

calculator.

) Yoy P Py A
L;__.#\_._,.._ e A A A A . Y U WP e A

”M‘MMM‘M#“’J/-‘%
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. Exercise 131

1. Find the shaded areas.

(@) () } (i) v

y=(r—1)

y=z+1

Ay a2
y74x‘z 1 .

7

(b) () y (i) ¥

1!:\332-i-2a:-i-12T y=2"~22+9

X

y=—x2—dx+12 \w

(i) v
y=a?—Te+7

y=3—z—x
\

A Find the area enclosed between the graphs of y=x2+x -2
and y=x+2, [6 marks]

Find the area enclosed by the curves y=e* and y = x?, the
y -axis and the line x =2. [6 marks]

|
- © Cambridge University Press 2012. J
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1 S
) Find the area between the curves y =— and y =sinx in the

region 0<x<Tm. x [6 marks]
Show that the area of the shaded region in the diagram on the
9
left is > [6 marks]
The diagram below shows the graphs of y =sinx and y=cosx.
Find the shaded area.
y
Y = COST y =sinx

[6 marks]

— €T

[ Find the total area enclosed between the graphs of y = x(x — 4)2
and y = x* —=7x+15, [6 marks]

€ 8 The area enclosed between the curve y = x? and the line

2
y=mx is 105. Find the value of m if m>0. [7 marks]

Summary

o Integration is the reverse process of differentiation.

If we know Q, the indefinite integral gives the original function which has this gradient, with

X
an unknown constant of integration c.

To find ¢ and hence determine the original function precisely, we need to know one point (p,q)
on the curve.

The indefinite integrals of some common functions are:

1
jx” dx=——x""4+¢ forn#-1
n+1

jx" dx=Inx+c forx>0
e*dx=e"+c¢c
J'sinxdx:—cosx+c

J'cosx dx=sinx+c¢

iy
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b
o The definite integral j f{x) dx is found by evaluating the integrated expression at the upper

limit b and then subtracting the integrated expression evaluated at the lower limit a.

o The area between the curve y = f(x), the x-axis and the lines x = a and x = b is given by

b
A=["fx) dx
provided that the curve lies entirely above the x-axis between x=a and x=b.

If the curve goes below the x-axis, then the integral of the part below the axis will be negative.
On a calculator we can use the modulus function to ensure we are always integrating a positive
function.

o The area bounded above by the curve y = f(x) and below by the curve y = g(x) is

A= [ - g () dx

where a and b are the x-coordinates of the intersection points of the two curves.

Introductory problem revisited

The amount of charge stored in a capacitor is given by the area under the graph of
current (I) against time (t). For alternating current the relationship between I and ¢ is

I = sin t; for direct current the relationship is I =k, where k is a constant. For what value
of k is the amount of charge stored in the capacitor from ¢ = 0 to t = the same whether
alternating or direct current is used?

For alternating current, the area under the curve of I against ¢

kY
is JO sintdt =[—cost]; =2.
For direct current, the area is L kdt =[kt]; = km.

.. . 2
These two quantities are equal if k =—.
s

|
- © Cambridge University Press 2012. J
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If f’(x)=sinxand f(g):O,ﬁnd f(x). [4 marks]

Find the area enclosed between the graph of y = k? —x? and the x -axis,
giving your answer in terms of k. [6 marks]

\/_

. Find the indefinite integral J [5 marks]

e (a) Solve the equation

Ioax3—xdx:O,a>0

(b) For this value of g, find the total area enclosed between the x-axis and the
curve y=x>—x for 0<x<a. [6 marks]

The diagram shows the graph of y =x" for n>1.

(a) (i) Write down an expression for the area of
the white rectangle with vertices x = 0
and x = a.

(ii) If B is the area of the blue shaded region,
find an expression for B in terms of a, b
and n.

(b) If the red area is three times larger than the

blue area, find the value of . [6 marks] a b

a Find the area enclosed between the graphs of y =sinx and y =1-sinx
for 0<x<m. [3 marks]

The function f(x) has a stationary point at (3, 19), and f”(x)=6x+6.
(a) What kind of stationary point is at (3, 19)?
(b) Find f(x). [5 marks]
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Long questions

1. The derivative of f(x) is f’(x)=e* +c. Theline y=3x+2 istangent to the
graph y= f(x)atx =1
Find the value of .
Find the value of f(1).
Find an expression for f(x).
Find the area under the graph y = f (x) between x=0andx=1
[11 marks]

2. Show that 542 + 4ax — x* = (Sa - x)(x +a).
Find the coordinates of the points of intersection of the graphs
y=5a*+4ax—x*and y= x> —a’.
Find the area enclosed between these two graphs.

Show that the fraction of this area above the x-axis is independent of a, and
state the value that this fraction takes. [10 marks]
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In this chapter you
will learn:

* how to differentiate
composite functions

* how to differentiate
products of functions

* how to differentiate
quotients of functions

® how to maximise or
minimise functions with
constraints.

420 Topic 6: Calculus

Further
differentiation

Introductory problem

If a cone has a fixed slant height of 12 cm, find the
maximum volume it can have as the angle & varies.

12 cm

In this chapter we will build on the techniques developed

in chapter 12 and learn new tools for differentiating a wider
range of functions. Much of the work here will also be used in
chapter 15, where we expand our integration techniques.

Differentiating composite functions
using the chain rule

We can already differentiate functions such as y = (3x* + Sx)2 by
expanding the brackets and differentiating term by term:

y=(3x2) +2(3x?)(5x) + (5x)
=9x* +30x> +25x2

d
Y 36x7 +90x2 +50x
dx

=2x(18x% +45x +25)

But what if the function is more complicated - for instance,
having a higher power or more terms in the brackets? While the
same method would work, it is clearly not efficient to expand,
say, y = (3x? +5x+2)  and then differentiate each term. And

© Cambridge University Press 2012.
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what about functions such as y = sin3x or y = e*’ ? Although
we know how to differentiate y = sinx and y = e*, we do not yet
know any rules that tell us what to do when the argument of the
function is changed to 3x or x°.

The functions y = (3x? +5x + 2)7, y=sin3x and y = e’ may We met composite
seem quite different but do have something in common - they @ functions in section <l
are all composite functions: 4C.

y=(3x2+5x+2) isy=u’ where u(x)=3x>+5x+2

y =sin3x is y=sinu  where u(x) =3x

y=e¥ is y=e" where u(x) = x

There is a general rule for differentiating any composite
function.

KEY POINT 14.1

The chain rule:

If y = f(u) where u= g(x), then
o_d d

= X —
dx du dx @

The proof of the chain rule is very technical and involves
differentiation from first principles. In this course we will just
accept the rule and learn to use it in a variety of situations. Let
us first apply it to the three functions above.

Worked example 14.1

Differentiate the following functions.

(a) y=(3x2+5x+2)" (b) y=sin3x (c) y=e*

@
As these are all composite functions, we can use the ® (a) y =u” whereu=23x" +5x+2
chain rule on each of them. dy d—yxd—u
ax du  dx

=7u® X (B6x+5)

Write the answer in terms of x.* =7(3x* +5x+2)°(6x+5) |

—
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continued . ..

. . . ()
Write the answer in terms of x and rearrange into®
the conventional form.

)
Write the answer in terms of x and rearrange into

(b) y =sinu where u =3x

dy _dy  du

dx du dx
=(cosu)x3
=3c0s5X

A oA A

(c) y =e“ where u=x?

dy _dy du
dx du dx
.. =e"X2x

2
=2xe*

the conventional form. I . e s pa)

422 Topic é: Calculus

T

Part (b) of Worked example 14.1 illustrates a special case of the
chain rule, where the ‘inside’ function is of the form ax +b.

KEY POINT 14.2

%f (ax+b)=af'(ax+b)

For example,

%(4x +1)" = 4x7(4x+1)" and %(e“") =—2e* %,

It is useful to remember this shortcut and it is not necessary

to write down the ‘inner function’ u each time. The chain rule
calculation can then be done more concisely, as demonstrated in
the next example. The basic idea is to imagine brackets around
the inner function, differentiate the outer function as if the
bracketed expression were a single argument, and then multiply
by the derivative of the bracketed expression.

© Cambridge University Press 2012.
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Worked example 14.2 | l |

Differentiate the following composite functions. /58
(a) y= ex23x
3
(b) y=—
X3 —
] ,
{ K
eV differentiates to 0 ** (a) y=e?30 ‘; 1y
x? —3x differentiates dy 2oy !l
to 2x —3. d—x=(2x—5)e' ' ‘
{
\ )
d
_i ¢
First, rewrite the square root as a power. <* (b) y=3(x>-5) 2 4 Le
j |
; y
1 3
- . . 3,2 .. dy 5} _3 (
3() 2 differentiates to —=( ) 2°¢ —~=—=(x*-5) 2 (3x? (
0 2() dx 2( ) 2(25%) 1
3 _ . . 2 _é ‘y
x% - 5 differentiates to 3x2. _ —%xz (x* —5) 2 ) 55
e NP /_“"u‘w,,__AsAAJ
\ - anp A J .I
I
EXAM HINT 1
o

It takes practice to be able to apply the chain rule without

writing down u explicitly. Don't worry if you find this
method confusing; although it is often quicker, you will | -
never be forced to use it.

o

¥

Sometimes it is necessary to apply the chain rule more than once. . ;)
Worked Example 14.3 !
Differentiate y = cos*(In2x). Sl

3 o. — | 2 )2 1"1 )
Remember that cos>A means (cos A)". y = (cos(In2x)) j X
You can think of this as a composite ; )
of three functions. i =
. {
3 24 d—y=5(ooe(ln2\‘ﬂ2 ><(—5ir|(|r|2\'))><lfi "
() differentiates to 3( ) o e A
. . . b =
cos( ) differentiates to —sin( ) _ —écoaz(IHZx)ain(IHZx) t 7
X {
In2x differentiates to 2 x R (by Key point 14.2). ‘
2x  x s A f( -
N J 3
J4 0
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2 ¥ n
P . Exercise 14A
{ 1. Use the chain rule to differentiate the following expressions with
E respect to x.
g @) () (3x+4) (i) (5x+4)
p b) () 3x-2 (i) Vx+l
! 1 1
() () — (i) 2
> 3—-x (2x+3)
1 (d) (1) e10x+l (11) e4—3x
X (e) (i) sin4x (i) cos(3x+m)
(f) (i) In(5-x) (i) In(3-2x)
| B
2. Use the chain rule to differentiate the following expressions
with respect to x.
3 (a) (i) (x2-3x+1) (i) (x*+1)
' (b) () e (i) e
: © () (2er+1)° (i) (2-5e*)"
-1 (d) (i) sin(3x%+1) (i) cos(x*+2x)
(e) (i) cos’x (ii) sin*x
() () In(2x—5x*) (i) In(4x>-1)
(@ (i) (4lnx-1)° (i) (Inx+3)"
v 3. Differentiate the following using the short cut from Key
. point 14.2.
4 5 8
(@) () (2x+3) (i) (4x-1)
| / M) () (5-x)" i) (1-x)7
(¢) (i) cos(1-4x) (ii) cos(2—x)
(d) (i) In(5x+2) (i) In(x—4)
| 4. Differentiate the following using the chain rule twice.
@ () —; (i) tan®2x
. cos?3x ,
(b) (l) esin23x (ll) e(anx)
(© (i) (1-2sin22x)" (i) (4cos3x+1)
1 (d) (i) In(Q—3cos2x) (i) In(2-cos5x)
£ ,
Find the equation of the tangent to y =(3x+5)  at the point
'k where x = 2. [7 marks]
s -
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, 1
a Find the equation of the normal to the curve y = ———
4x* +1
at the point where x = V2. [7 marks]

Find the exact coordinates of stationary points on the
curve y = e*"* for x €[0,2m]. [5 marks]

B For what values of x does the function f (x) =In(x? —35)
have a gradient of 1? [5 marks]

9. A non-uniform chain hangs from two posts. Its height h
above the ground is described by the equation

1
h=e4+—,-1<x<2
er
The left post is positioned at x = —1, and the right post is at
x=2.

State, with reasons, which post is taller.
1
(3)) Show that the minimum height occurs at x = gln 2.

Find the exact value of the minimum height of
the chain. [8 marks]

We now move on to products of two functions. We can

already differentiate some products, such as y = x*(3x% —5), by
expanding and then differentiating term by term. However, as
for composite functions, this method is rather impractical when
the function is more complicated, for example y = x*(3x -5)’;
moreover, expanding does not help with functions such as
y=x>cosxor y=xlnx.

© Cambridge University Press 2012.
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Many people think that
@ a chain fixed at both

ends will hang as a
parabola, but it can be
proved that it hangs in the
shape of the curve in
question 9, called a
catenary. The proof of this
requires fechniques from a
mathematical area called
differential geometry.
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KEY POINT 14.3

The product rule

If y= u(x)v(x) , then

dy _
dx

du dv
V—du—
dx dx

Just as there is a rule for differentiating composite functions,
there is a rule for differentiating products.

Differentiate y = x*(3x> —5) using the product rule.

It doesn’t make any difference which function o
you call u and which you call v.

Apply the product rule. o

amd

du
P
dv
P

dy du dav

L =y—Fy—

dax dax
=(3x2 —5)4x° + x* xO6x
=12x° —20x% + 6x°
=18x° —20x°

j_.\_o-—‘_r‘»&,»_,‘_“_" ..f P o VPN

dx

4x3

ox

Letu=x*andv =3x? —5. Then

e,

| See Fill-in proof sheet 15 on the CD-ROM if you are interested
in how this rule is derived.

Worked example 14.4

LI— RN . N PUPDE oSN

EXAM HINT

After applying the product rule, you do not need to simplify

the resulting expression unless the question explicitly tells you

to do so.

When differentiating a more complicated product, be aware that
the chain rule may be needed as well as the product rule.

426  Topic 6: Calculus
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Worked example 14.5

Differentiate y = x*(3x? — 5)5 and factorise your answer.

This is a product of two functions x4 and*

5
(3x2-5). It does not matter which we
take as v and which as v.

v(x) is a composite function, so use the chain
rule to find its derivative.

Now apply the product rule.

We are asked to factorise the answer, so*
instead of expanding the brackets, look
for common factors.

pv

-

Letu=x* and v =(3x2 —5)5. {
Then y
AU _ 4y $
dx !

and . ':

v ) 4

5—5(5x -5) (6x) /

= 30x(3x2 - 5)° !&
& y
dx  dx  dx f
= (3x2 —5)° 4x° + x* 30x(Bx2 - 5)" ]

= 2x% (322 - 5)" [2(3x2 - 5) + 15x2
L

=2x2(3x2 - 5)* (622 =10 +15x2)

= 2x%(3x% — B)*(21x2 —10) d

f_f—»fdr«__*,,.\*_,_,»,/“"m‘-w,k_‘,,A.l

]

W

. Exercise 14B

1. Differentiate the following using the product rule.

(@) ) y= x(1+ x)3 (i) y=4x? (x + 3)4
(b) (i) «x?*sinx (ii) 5xtanx

(¢) () e*lnx (ii)

e*sinx

2. Differentiate the following using the product rule.
(a) (i) y=x%cosx (ii) y=x"'sinx
() (i) y=x7Inx (i) y=x’lnx
(o () y=x* 2x+1 (ii) y=x"'v4x
(d) (i) e*tanx (i) e**'sin3x
3. Find f’(x)and fully factorise your answer.

@ G) f(x)=(x+1)"(x-2)

© Cambridge University Press 2012.
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(i) f(x)=(x-
) G) f(x)=(2x-1)"(1-3x)" @) f(x)=(1-

3)7 (x+ 5)4
x)5 (4x+ 1)2
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n Differentiate y = (3x> — x +2)e?", giving your answer in the

form P(x)e>*. [4 marks]
Find the equation of the tangent to y = xe* where x = 1.
[7 marks]

a Given that f(x)=x%*, find f”(x) in the form
(ax2 +bx+ c)e“. [4 marks]

Find the x-coordinates of the stationary points on the
curve y = (2x + 1)5 e, [5 marks]

e Find the coordinates of the stationary point on the graph
of y=xvx+1. [3 marks]

g Find the exact values of the x-coordinates of the stationary
points on the curve y =(3x+ l)5 (3- x)3. [6 marks]

Consider the graph of y = xsin2x for x €[0,2m].

(a) Show that the x-coordinates of the points of inflexion
satisfy cos2x = xsin2x.

(b) Hence find the coordinates of the points of inflexion.

[6 marks]
Find the derivative of sin(xe*) with respect to x. [5 marks]
(a) If f(x)=xInx, find f"(x).
(b) Hence find J.lnxdx. [5 marks]
Find the exact coordinates of the minimum point on the
curve y =e *cosx, for 0Sx <. [6 marks]
Given that f (x)=x>v/1+x, show that f'(x)= *latbx)
. ‘ ’ 241+ x
where a and b are constants to be found. [6 marks]

15. Write y = x* in the form y = e/1¥),
. dy

Hence or otherwise, find d_
X

Find the exact coordinates of the stationary points on
the curve y = x*. [8 marks]
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Differentiating quotients using the
quotient rule

By combining the product rule and the chain rule, we can
differentiate quotients such as

_xr—4x+12

(x-3)

This function can be expressed as

y

y=(x?—4x+12)(x-3)"

Then, taking u = (x2 —4x+ 12) andv = (x - 3)_2, with

% =2x—4 and % = (—2)(x - 3)_3, we get

Y (e 3) xa) (w2 -+ 12)(2) (x-3)

After tidying up the negative powers and fractions, this

simplifies to % = sz _3;32.
x j—

If we apply the same process to a general function of the form
u(x)
v(x)

See Fill-in proof 16 on the CD-ROM for details.

, we can derive a new rule for differentiating quotients.

In this course you are only expected to know how to use the
result.

KEY POINT 14.4

The quotient rule
If y= ux) , then
v(x)

du o dv
dy v —uy

: i ‘
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Worked example 14.6

x*—4x+12

(x—3)

Differentiate y = using the quotient rule and simplify your answer as far as

possible.

The function is a quotient. * y=2where u=x2 —4x+12,v=(x—3) ]
Make sure to get v and
v the right way round.

Use chain rule to differentiate v. <* =

(x=3)(2x—4)—(x2 —4x+12)x2

Notice that we can cancel a factor «® =

of (x—3) from top and bottom. (x-3) )
_2x° —10x+12-2x" + 6x — 24 1
‘ (v=3) ]
_ex2 ;
_(x_5)5 i,
_—2x+6)
EED
PV W oo i WOV Iy v VY
> .

In section 12E we stated that the derivative of tan x is

cos?x
We can now use the quotient rule, together with the derivatives
of sinx and cos x, to prove this result.

Worked example 14.7

d 1
Prove that —(tan x) = .
dx cos’x
N {
. . X g
Express tan x in terms of sin x and cos x, whose * tanx = 2 |
derivatives we know. cosx k
Let u=sinx, v=cosx ‘
—
430 Topic 6: Calculus © Cambridge University Press 2012.

Not for printing, sharing or distribution.

ailicalas e e n Filae ) Y 3 B 1 Y (TP T T I

YIRS



continued . ..

du_ dv
Use the quotient rule. o dy _ve—ug
dx V2

_ c05Xcos X —sinx(—sinx)

(cos x)?

_ C05” x +sin? x

ANy s s
- M“h a A A

cos? x
. L . . 1
Use the identity sin2x + cos?x =1 to simplify. «® =
cos? x
4
ey ]
. - .

The quotient rule, like the product rule, often leads to a long
expression. Sometimes product and quotient rule questions are
used to test your skill with fractions and exponents, as in the
following example.

Worked example 14.8

X x+c
Differentiate and give your answer in the form —== where ¢,k,peN.
v+l ky(x+1)°
® .

The function is a quotient. Identify v and v.* y=

Vx+1

1
Letu=x, v=+x+1=(x+1)2

du_ v
Use the quotient rule <* dy _Va—ud
dx ve

1 1
(x+1)2 ><1—x><%(x+1)'5

) ((x 1)z )

Nx+1-— X

laas At A AeeSemifia, L A esa A A e e, VAo

As we want a square root in the answer, turn ¢ 3 2 x +1
the fractional powers back into roots. - x4+ 1
e
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continued . . .

o o e 2(x+1)—x
Remove ‘fractions within fractions’ by = 4
multiplying top and bottom by 2/x +1. 2(x+1)Vx+1

0. xX+2

3
Notice that xv'x = x2 = Jx3 . -

e A

2 (x+1)5

i)

d

. Exercise 14C

1. Differentiate the following using the quotient rule.

S _xml o _x2
@ @ y=""7 (i) y="—3
b)) y=2FL Gy =X
X x—1
. 1-2x . _4-x?
© T W r=1
@ @) y=" () y=2
X X

T Find the coordinates of the stationary points on the graph

x2
T [5 marks]
x_

of y=

sinx
Find the equation of the normal to the curve y = —— at
X

. T . .
the point where x = - giving your answer in the form

y =mx+ c where m and ¢ are exact. [7 marks]
The graph of y = al ;Z has gradient 1 at the point (4,0),
X
where a # —2. Find the value of a. [5 marks]

Find the exact coordinates of the stationary point on the

Inx
curve y = —— and determine its nature. [6 marks]
x

a Find the range of values of x for which the function
2
f(x)= lx is increasing. [6 marks]
-x

432 Topic 6: Calculus _ . © Cambridge University Press 2012.
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, x? dy x(ax+b)
yA Given that y = , show that — = ———~ | stating clearl
. 4 Nx+1 dx 2(x+1)P 8 Y
the value of the constants a,b and p. [6 marks]

a Show that if the curve y = f(x) has a maximum stationary

point at x = a, then the curve y = has a minimum

1
flx)

stationary point at x = a, provided f(a) # 0. [7 marks]

We  looked  at

In this section we shall look at how to maximise or minimise <] optimisation in <]
functions which at first sight appear to depend on two different section 12].

variables. However, the two variables will be related by a

constraint, which allows us to eliminate one of them; we can

then follow the usual procedure for finding maxima or minima.

Worked example 14.9

Find the maximum value of xy — y given that x +3y =7.

Give the function a name. * We wish to maximise F = xy —y
*®
Use the constraint to write one variable ® x+3y=7
in ferms of the other, and hence express =x=7-3y
F as a function of one variable only. F=(7-3y)y-y <
=0y —3y? 1
{
» JF :
Find stationary points. ® 526_63/ ]
At a stationary point — =0: .
dy }
6-6y=0 )
& y=1 4
andsox=7-3y=4 f
The value of F at this point is ‘
F=4x1-1=23
® oF ‘
Classify the stationary point. ® o —6<0
S0 F =3is a local maximum. ‘

© Cambridge University Press 2012. 14 Further differentiation 433
Not for printing, sharing or distribution.

1)

I S

7 A ST (@) B S T O [VRTY [ PP Rt 1 /7 4 # JURN7 iy MLy oW A1 10 41 Y0 @3 B .



]

continued . ..

Check end points and asymptotes. <*

large F = 6y — 2y? becomes large and
negative.
5o 2 is the global maximum value.

There are no asymptotes, and as | y | gets

L Lf_‘-‘f—A.r‘u_qu__‘_“u,/'"&u—_u

E

L.

W

Sometimes the constraint is not explicitly given, and needs to be
deduced from the context. Two common types of constraints are:

o A shape has a fixed perimeter, area or volume - this gives
an equation relating different variables (height, length,
radius, etc.).

A point lies on a given curve - this gives a relationship
between x and y.

Worked example 14.10

Give a name to the quantity we *
need to optimise.

Write the function in terms of one®
variable only.

Find stationary points. *
This function looks complicated
and the question does not require
exact answers, so we can use

the GDC.

Find the point on the curve y = x? that is closest to the point (2, 0).

Then L=1/(x—2)" +y?

If P lies on the curve, then y =x%, s0

L= (Jc—2)2+x6

1.30

T
0.829

The corresponding y-value is y = 0.569 (3 SF).

So the coordinates are (0.629, 0.569).
J‘-—“—f‘—‘-‘

PPV

Let L be the distance from (2, O) to the point P(x,y).

From GDC, the minimum occurs at x = 0.8629 (3 SF).

VW . .“““H».__A»-AJ

—— s e AL &.f"%h‘kq‘_“~ o A e U TN

{

\

v
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. Exercise 14D

1. (a) (i) Find the maximum possible value of xy given that
x+2y=4.

(ii) Find the maximum possible value of xy given that
3x+y=7.
(b) (i) Find the minimum possible value of a+ b given that
ab=3anda,b>0.

(ii) Find the minimum possible value of 2a + b given that
ab=4anda,b>0.

(¢) (i) Find the maximum possible value of 4r?h if 2r> +rh =3
andr,h>0.

(ii) Find the maximum possible value of rh?* if 472 +3h> =12
and r,h > 0.

A square sheet of card with 12 cm sides has four squares of
side x cm cut from the corners. The sides are then folded to
make a small open box.

12

(a) Find an expression for the volume of the box in terms of x.

(b) Find the value of x for which the volume is maximum
possible, and prove that it is a maximum. [6 marks]

> An open box in the shape of a square-based prism has
volume 32 cm? Find the minimum possible surface area of
the box. [6 marks]
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n A rectangle is drawn inside the region bounded by the

curve y = 4 — x? and the x-axis, so that two of its vertices
lie on the x-axis and the other two lie on the curve.

Find the x-coordinate of vertex A so that the area of the
rectangle is the maximum possible. [6 marks]

4 A rectangle is drawn inside the region bounded by the

curve y = sinx and the x-axis, as shown in the diagram.
The vertex A has coordinates (x,0).

(a) (i) Write down the coordinates of point B.

(ii) Find an expression for the area of the rectangle in
terms of x.

(b) Show that the rectangle has maximum area when
2tanx =1 —2x.

(c) Find the maximum possible area of the
rectangle. [8 marks]

a What is the largest possible capacity of a closed cylindrical

can with surface area 450 cm?? [6 marks]

What is the largest possible capacity of a closed square-

R IY A |

based can with surface area 450 cm?? [6 marks]

a The sum of two numbers x and y is 6, and x, y > 0. Find

the two numbers if the sum of their squares is
(a) the minimum possible

(b) the maximum possible. [7 marks]

a A cone of radius r and height /# has volume 817.

(a) Show that the curved surface area of the cone is given

by §=Z/r¢ 2437

,
(b) Find the radius and height of the cone that make

the curved surface area of the cone as small

as possible. [7 marks]

© Cambridge University Press 2012.
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A 20 cm piece of wire is bent to form an isosceles triangle

with base b.
(a) Show that the area of the triangle is given by

A= g«JlOO—IOb.

(b) Show that the area of the triangle is the largest
possible when the triangle is equilateral. [6 marks]

2 The sum of the squares of two positive numbers is a.

Prove that their product is the maximum possible
when the two numbers are equal. [6 marks]

Find the coordinates of the point on the curve y = x?, x 20,

that is closest to the point (0, 4). [7 marks]

Summary

The chain rule is used to differentiate composite functions.
If y = f (u) where u = g(x), then

b _dy du

dx du  dx

The product rule is used to differentiate two functions multiplied together.
If y = u(x)v(x), then
dy _ du dv

=v—-+

u —
dx dx dx

The quotient rule is used to differentiate one function divided by another.

u(x
Ify= Q , then
v(x)
du dv
dy_rva-uy
dx v?
When solving optimisation problems that involve a function which depends on two variables,
the variables will be related by a constraint. It is possible to use the constraint to express the
quantity we wish to minimise or maximise in terms of one variable only (by eliminating the
other variable); then we can differentiate this function and find its stationary points.

Two common types of constraint are:

- ashape with a fixed perimeter, area or volume (this gives an equation relating
different variables)

- apoint that lies on a given curve (this gives a relationship between x and y).
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Introductory problem revisited

If a cone has a fixed slant height of 12 cm, find the maximum volume it can have as the
angle O varies.

12 cm

The first thing we need to do is write an expression for the volume V' r
of the cone. Then we will aim to differentiate with respect to 6 and

solve j—‘; =0 to find the value of 8 at which the maximum occurs.

The formula for the volume of a cone is 12 cm

1
V =—nr’h
3

Using the right-angled triangle shown in the diagram, we have N

r=12siné
h=12cosé&
Substituting these into the formula for V gives
1
V= gﬂ:(12sin 19)2 (12 cos 19)
123
= e nsin? fcos &

Now that V is expressed in terms of 6 only, we can differentiate:
dv 123
—=—" (2 sindcos 6’) cos @+ sin’ 6’(— sin 6’)]
d¢ 3

123 . .
= Tﬂ:[Z sin #cos? @ —sin® 49]

: . odVv
For stationary points, — =0:
dé 5

?n[z sin #cos? @—sin® 4]=0
& 2s8indcos? @—sin®* =0
& sin@(2cos? @—sin? §)=0
&sinfd=0 or 2cos8?@—sin? =0

© Com_bri ge Uni\'qersity Pgess? 2Q] y—

INOT Tor prinfing, sharing or d pUTIoN

38 Ipplc_é;__qulﬂus V7R Lo IV 4Lt




' | o . r‘: e = T ;'- Wy & '9' h‘ |_j— - e

sin #= 0 has no valid solutions, as 0° < &< 90° for the cone.

The other equation, 2 cos? #—sin* =0, is satisfied when
sin? @=2cos? @
Stan?f=2
V3

s tand=2 V2
(tan @= —/2 has no solutions in 0° < &< 90°).
Therefore the maximum volume is attained when tan &= +/2, which

‘ m
1 1

implies that sin&= Q and cos@=

NG| NG}

(see the right-angled triangle

diagram).

123
Finally, substitute these values of sin & and cos & into the expression V = T sin? #cos & to

242 ()

122231
=
=128/3n

find the maximum volume:
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Mixed examination practice 14

Short questions

%& Find the exact value of the gradient of the curve with equation y =

4—x?
point where x = % [5 marks]
Find 2 if
dx
(a) y — eSx
(b) y=+3x+2
(c) y=e*3x+2 [8 marks]

The graph of y = xe™** has a stationary point at x = % Find the value of k.

[4 marks]

The diagram shows a rectangular
area ABCD bounded on three sidesby 60m A
of fencing, and on the fourth by a wall AB.

Find the width of the rectangle (that is,
the length AD) that gives its

maximum area. [5 marks] p

(© IB Organization 2005)

A curve has equation

f(x)

= wherea #0and b,c >0
b+e ™

(a) Show that

ace (e —b)

f7(x)= (b+efc")3

(b) Find the coordinates of the point on the curve

where f”(x)=0. [11 marks]
(© IB Organization 2003)
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1.

y

The function fis defined as f(x) = e* sinx, where B
x is in radians. Part of the curve of fis shown in
the diagram. There is a point of inflexion at A A
and a local maximum point at B. The graph of f
intersects the x-axis at the point C.
Write down the x-coordinate of

the point C. [1 mark] C
(i) Find f'(x). \

(ii) Write down the value of f’(x) at the point B.
Show that f”(x)=2e* cosx.
(i) Write down the value of f”(x) at A, the point of inflexion.
(ii) Hence, calculate the coordinates of A. [11 marks]
(© IB Organization 2007)

X2

A curve has equation y = .
1-2x

Write down the equation of the vertical asymptote of the curve.
Use differentiation to find the coordinates of stationary points on the curve.

Determine the nature of the stationary points.
2

(@)) Sketch the graph of y = [17 marks]

1-2x

2
The function fis defined by f(x)= ;C—x for x> 0.

(i) Show that 2% = e*n2,

(ii) Hence show that di(2") =2*1n2.
X

_ 2x—x21n2

(i) Show that f’(x) I

(ii) Obtain an expression for f”(x), simplifying your answer as far as
possible.

(1) Find the exact value of x satisfying the equation f”(x)=0.

(ii) Show that this value gives a maximum value for f(x). [14 marks]

© Cambridge University Press 2012.
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In this chapter you
will learn:

® to integrate using
known derivatives

® to infegrate by
reversing the chain rule

® to integrate using a
change of variable
(substitution)

* to apply integration
to problems involving
motion (kinematics)

¢ how to find volumes
of rotationally
symmetrical shapes.
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Prove that the area of a circle with radius r is r2.

Having extended the range of functions we can differentiate, we
now do the same for integration. Sometimes we will be able to
use results from previous chapters directly, but in other cases

we have to develop new techniques. In this chapter we look at
the most commonly used integration method - substitution or
reversing the chain rule — and show how integration can be used
to solve some problems that arise in applications.

In chapter 13 we reversed a number of standard derivatives that
had been established in chapter 12, thus obtaining the following
list of basic integrals:

1
Jx“ dx=——x""+¢, n#+-—1
n+1

Jex dx=e*+¢

1

J—dlenx+c, x>0
X

Jsinxdxz —cosx+c¢

Jcosx dx =sinx+c

The chain rule for differentiation (section 14A) allows us to go
further and deal with integrals such as J.2 cos(2x)dx. Here the
idea is to integrate cos to sin and then think about what the

chain rule would give us if we differentiated back. In this case,

d
d—(sian) = 2cos2x, and the factor 2 (the derivative of 2x) that
X

came from applying the chain rule happens to match precisely

© Cambridge University Press 2012.
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the factor in the original integral, so we have the correct answer | |
straight away:

IZcos(Zx) dx=sin2x+c¢ 4
However, in a similar situation, we may find that the factor coming !-I

from the chain rule does not match the factor in the integral. If
these factors are constants, we can compensate for the discrepancy -
by cancelling out the constant factor generated by the chain rule.

For example, to find Jsin(3x) dx we proceed as before, integrating

sin to —cos; but this time, when we differentiate back, the chain

rule gives us an unwanted factor of 3: i(— cos3x)=3sin3x.
x

Therefore, we simply divide by 3 to cancel it out:

A

J.sin(3x) dx = —%cos3x+ c

o

This method can be used with any of the standard derivatives

and integrals in the list above. P
Worked example 15.1 I i
Find the following integrals. 2 i
(@ [(2x-3)' dx  (b) [(1-4x)" dx

=

Infegrate ( )# to 1( )* and then consider the effect*” (@)
of the chain rule. j(2x—5)4 dxz%xé(Zx—5)5+c
d (1 5 4 i
We know thota(g(Qx—@ )—2(2x—3) , SO :%(Zx—5)5+c ‘r‘ )

1
multiply by 7 fo remove the unwanted factor of 2. R -
> :‘

. (b) ; ol
)50—4@é+of IL

2 1
Integrate ( ) 3 to 3( )3 and then consider the

effect of the chain rule. J'(1_4x)‘§ dx:(_%

d %\— _ — = 1 ;
We know fhotd—x(3(1—4x)~}—( 4)(1-4x) 3 2_2(1_43()5 +c =
so multiply by —% to remove the unwanted —4.  scloem i o, a0 "
. W

You may notice a pattern here: we always divide by the coefficient
of x. This is indeed a general rule, which comes from reversing 4
the special case of the chain rule given in Key point 14.2.
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KEY POINT 15.1

If a and b are constants, then

EXAM HINT
/ .
This rule only OPP\‘eS

when the 'inside
function is of the form

ax + b, where adn
b are constants.

J.f(ax+b)dx:lF(ax+b)+c
a

where F(x)is the integral of f(x)

With this shortcut in hand, we no longer need to consciously
consider the effect of the chain rule every time.

Worked example 15.2

Find the following:
1 2
a) |—e** dx b dx
(®) Jz ®) J.6x+5
Integrate eV to €’ and divide by the <* @ ¢, 1 j‘
coefficient of x. j—e‘*"dx =—xX—e"+c 5
2 2 3
1 é
=—e* +c |
& i
1 {
Integrate O to In( ) and divide by the «® (b) j
1 r
coefficient of x. J’6x+5"‘x:2xg‘”ﬁ6“5)“ :
=i]n(6x+5)+c d
\_ D e e PPN "“"“‘-»L_‘wu'J

1 You may need to use algebra to rewrite the expression in the
form of a standard derivative which can then be reversed.

Worked example 15.3

Find the integral

; x+4
[ xtt g,
12 —5x —2x?
- i
9 If th lynomials in th o j E e E
ere are polynomials in the expression, P G20+ 4) y
it is generally a good idea to check :
whether they factorise. §
o 1 !
Now the function resembles one of the ** :JB > d {
- —2x r
standard derivatives. 1
1
So we can use the rule in Key point 15.1. ¢ =—-InG@-2x)+c 4
AT et e
- ’ W
/| : . F— .
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. Exercise 15A
1. Find the following integrals.

@) () jﬂx+3fdx (ﬁ)‘“x—Zfdx

®) @) J(4x—5fdx (i) j(%x+4) dx
© @) j(4-x)8dx (i) j4(3—“lx) dx
(d) () [V2x-1dx (i) [72-5x0)" dx

(&) () j(4 e @ I‘{/“j
3

2. Find the following integrals.

(@) (i) [3e™ dx (i) [ers dx
®) @) fe dx i) [4e > dx
(© @) [-6e dx (i) fei dx
) () je%" dx (i) [=2 dx
e
3. Find the following integrals.
. 1 .. 5
@ () [—ds () [
(i) [
Yoo s
o 3
(i) -[ 1-4x

4. Integrate the following.
(a) fsin(Z —3x)dx (b) I2 cosdx dx

5. By first simplifying, find the following integrals.

4x —9
(@) -[ (2x+3)
(b) [e2rer* dx
x+3
() J. 6—13x —5x?
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1

Two students integrate J3— dx in different ways.
x

Marina writes

ji dx:lfl dx=Llnx+c
3J x 3
while Jack uses the rule from Key point 15. 1 and divides by the
coefficient of x:
1 1
— dx= gln(3x) +c

3x
Who has the right answer?

Given that 0 < a <1and that the area enclosed between the graph

R IY A |

1
of y= P the x-axis, and the lines x = a? and x = a is 0.4, find
-Xx

the value of a correct to 3 significant figures. [5 marks]

The shortcut for reversing the chain rule (Key point 15.1) works
only when the derivative of the ‘inside’ function is a constant.
This is because a constant factor can ‘move through the integral
sign’ (see Key point 13.2 from section 13C); for example,

1
Icost dx :.[—X2c052x dx
2
1
:—.[2c032x dx
2

1.
=—sin2x+c
2
However, any expression containing the integration variable
cannot be moved across the integral sign: Jx sinx dx is not

the same as x_[sinx dx. So we need different ways to integrate

a product of two functions. Some products of a special form

can be integrated by extending the principle of reversing
the chain rule, which leads to the method of integration by
substitution.

When we use the chain rule to differentiate a composite
function, we differentiate the outer function and multiply